High-performance piezoresistive sensors based on transfer-free large-area PdSe2 films for human motion and health care monitoring

Rui Zhang, Jie Lin, Tao He, Jiafang Wu, Zhuojun Yang, Liwen Liu, Shaofeng Wen, Yimin Gong, Haifeng Lv, Jing Zhang, Yi Yin, Fangjia Li, Changyong Lan, Chun Li

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (1) : e12484. DOI: 10.1002/inf2.12484
RESEARCH ARTICLE

High-performance piezoresistive sensors based on transfer-free large-area PdSe2 films for human motion and health care monitoring

Author information +
History +

Abstract

Two-dimensional transition metal dichalcogenides (TMDs) are needed in high-performance piezoresistive sensors due to their strong strain-induced bandgap modification and thereby large gauge factors. However, integrating a conventional high-temperature chemical vapor deposition (CVD)-grown TMD with a flexible substrate necessitates a transfer process that inevitably degrades the sensing properties of the TMDs and increases the overall fabrication complexity. We present a high-performance piezoresistive strain sensor that employs large-area PdSe2 films grown directly on polyimide (PI) substrates via plasma-assisted selenization of a sputtered Pd film. The reliable strain transfer from the substrate to the PdSe2 film ensures an outstanding strain-sensing capability of the sensor. Specifically, the sensors have a gauge factor of up to -315 ± 2.1, a response time under 25 ms, a detection limit of 8 × 10-6, and an exceptional stability of over 104 loading-unloading cycles. By attaching the sensors to the skin surface, we demonstrate their application for measuring physiological parameters in health care monitoring, including motion, voice, and arterial pulse vibration. Furthermore, using the PdSe2 film sensor combined with deep learning technology, we achieved intelligent recognition of artery temperature from arterial pulse signals with only a 2% difference between predicted and actual temperatures. The excellent sensing performance, together with the advantages of low-temperature fabrication and simple device structure, make the PdSe2 film sensor promising for wearable electronics and health care sensing systems.

Keywords

layered crystal / PdSe2 / piezoresistive effect / strain sensor

Cite this article

Download citation ▾
Rui Zhang, Jie Lin, Tao He, Jiafang Wu, Zhuojun Yang, Liwen Liu, Shaofeng Wen, Yimin Gong, Haifeng Lv, Jing Zhang, Yi Yin, Fangjia Li, Changyong Lan, Chun Li. High-performance piezoresistive sensors based on transfer-free large-area PdSe2 films for human motion and health care monitoring. InfoMat, 2024, 6(1): e12484 https://doi.org/10.1002/inf2.12484

References

[1]
Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater. 2019;31(48):e1904765.
[2]
Spyropoulos GD, Gelinas JN, Khodagholy D. Internal ion-gated organic electrochemical transistor: a building block for integrated bioelectronics. Sci Adv. 2019;5(2):eaau7378.
[3]
Shih B, Shah D, Li JX, et al. Electronic skins and machine learning for intelligent soft robots. Sci Robot. 2020;5(41):eaaz9239.
[4]
Vaghasiya JV, Mayorga-Martinez CC, Vyskocil J, Pumera M. Black phosphorous-based human-machine communication interface. Nat Commun. 2023;14(1):2.
[5]
Cai M, Jiao ZD, Nie S, Wang CJ, Zou J, Song JZ. A multifunctional electronic skin based on patterned metal films for tactile sensing with a broad linear response range. Sci Adv. 2021;7(52):eabl8313.
[6]
Bao M-H. Micro Mechanical Transducers Pressure Sensors, Accelerometers and Gyroscopes. Elsevier; 2000.
[7]
Beeby S, Ensell G, Kraft M, White N. MEMS Mechanical Sensors. Artech House; 2004.
[8]
Hempel M, Nezich D, Kong J, Hofmann M. A novel class of strain gauges based on layered percolative films of 2D materials. Nano Lett. 2012;12(11):5714-5718.
[9]
Manzeli S, Allain A, Ghadimi A, Kis A. Piezoresistivity and strain-induced band gap tuning in atomically thin MoS2. Nano Lett. 2015;15(8):5330-5335.
[10]
Feng W, Zheng W, Gao F, et al. Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem Mater. 2016;28(12):4278-4283.
[11]
Wagner S, Yim C, McEvoy N, et al. Highly sensitive electromechanical piezoresistive pressure sensors based on large-area layered PtSe2 films. Nano Lett. 2018;18(6):3738-3745.
[12]
An CH, Xu Z, Shen W, et al. The opposite anisotropic piezoresistive effect of ReS2. ACS Nano. 2019;13(3):3310-3319.
[13]
Pang Y, Yang Z, Yang Y, Ren TL. A novel hierarchical nanostructure for enhanced optical nonlinearity based on scattering mechanism. Small. 2020;16(39):e1901124.
[14]
Yan W, Fuh HR, Lv Y, et al. Giant gauge factor of van der Waals material based strain sensors. Nat Commun. 2021;12(1):2018.
[15]
Sun Q, Seung W, Kim BJ, Seo S, Kim SW, Cho JH. Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater. 2015;27(22):3411-3417.
[16]
Zhao J, Wang GL, Yang R, et al. Tunable piezoresistivity of nanographene films for strain sensing. ACS Nano. 2015;9(2):1622-1629.
[17]
Conley HJ, Wang B, Ziegler JI, Haglund RF, Pantelides ST, Bolotin KI. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013;13(8):3626-3630.
[18]
Liu Z, Amani M, Najmaei S, et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat Commun. 2014;5:5246.
[19]
Kim C, Yoon M-A, Jang B, et al. Metallic phase transition metal dichalcogenide quantum dots showing different optical charge excitation and decay pathways. npg Asia Mater. 2021;13(1):41.
[20]
Zheng L, Wang X, Jiang H, Xu M, Huang W, Liu Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2021;15(3):2413-2432.
[21]
Li Z, Lv Y, Ren L, et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat Commun. 2020;11(1):1151.
[22]
Li W, Xu M, Gao J, et al. Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv Mater. 2023;35(8):e2207447.
[23]
Xu M, Gao J, Song J, et al. Programmable patterned MoS2 film by direct laser writing for health-related signals monitoring. iScience. 2021;24(11):103313.
[24]
Chow WL, Yu P, Liu F, et al. High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv Mater. 2017;29(21):1602969.
[25]
Di Bartolomeo A, Pelella A, Liu X, et al. Pressure-tunable ambipolar conduction and hysteresis in thin palladium diselenide field effect transistors. Adv Funct Mater. 2019;29(29):1902483.
[26]
Long M, Wang Y, Wang P, et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano. 2019;13(2):2511.
[27]
Wu D, Guo J, Du J, et al. Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano. 2019;13(9):9907-9917.
[28]
Zeng L-H, Wu D, Lin S-H, et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv Funct Mater. 2019;29(1):1806878.
[29]
Kang X, Lan C, Li F, et al. van der Waals PdSe2/WS2 heterostructures for robust high-performance broadband photodetection from visible to infrared optical communication band. Adv Opt Mater. 2021;9(7):2001991.
[30]
Wu J, Ma H, Zhong C, et al. Waveguide-integrated PdSe2 photodetector over a broad infrared wavelength range. Nano Lett. 2022;22(16):6816-6824.
[31]
Fan J-L, Hu X-F, Fu C, et al. Few-layer PdSe2 nanofilm/Si heterojunction for sensing NO2 at room temperature. ACS Appl Nano Mater. 2021;4(7):7358.
[32]
Lu LS, Chen GH, Cheng HY, et al. Layer-dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano. 2020;14(4):4963-4972.
[33]
Withanage SS, Khondaker SI. Low pressure CVD growth of 2D PdSe2 thin film and its application in PdSe2-MoSe2 vertical heterostructure. 2D Mater. 2022;9(2):025025.
[34]
Raval D, Gupta SK, Gajjar PN, Ahuja R. Strain modulating electronic band gaps and SQ efficiencies of semiconductor 2D PdQ2 (Q = S, Se) monolayer. Sci Rep. 2022;12(1):2964.
[35]
Deng S, Li L, Zhang Y. Strain modulated electronic, mechanical, and optical properties of the monolayer PdS2, PdSe2, and PtSe2 for tunable devices. ACS Appl Nano Mater. 2018;1(4):1932-1939.
[36]
Zhang R, Zhang Q, Jia X, et al. Thickness-dependent carrier transport of PdSe2 films grown by plasma-assisted metal selenization. Nanotechnology. 2023;34(34):345704.
[37]
Chen X, Huang J, Chen C, et al. Broadband nonlinear photoresponse and ultrafast carrier dynamics of 2D PdSe2. Adv Opt Mater. 2021;10(1):2101963.
[38]
Oyedele AD, Yang S, Liang L, et al. PdSe2: pentagonal two-dimensional layers with high air stability for electronics. J Am Chem Soc. 2017;139(40):14090-14097.
[39]
Wang YX, Yao S, Liao P, et al. Strain-engineered anisotropic optical and electrical properties in 2D chiral-chain tellurium. Adv Mater. 2020;32(29):2002342.
[40]
Yoon H, Lee K, Shin H, et al. In situ co-transformation of reduced graphene oxide embedded in laser-induced graphene and full-range on-body strain sensor. Adv Funct Mater. 2023;2300322.
[41]
Godden JO, Roth GM, Hines EA, Schlegel JF. The changes in the intra-arterial pressure during immersion of the hand in ice-cold water. Circulation. 1955;12(6):963-973.
[42]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444.
[43]
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J Comput Mater Sci. 1996;6(1):15-50.

RIGHTS & PERMISSIONS

2023 2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/