Liquid metal compartmented by polyphenol-mediated nanointerfaces enables high-performance thermal management on electronic devices

Chaojun Zhang, Yang Tang, Tianyu Guo, Yizhou Sang, Ding Li, Xiaoling Wang, Orlando J. Rojas, Junling Guo

PDF
InfoMat ›› 2024, Vol. 6 ›› Issue (1) : e12466. DOI: 10.1002/inf2.12466
RESEARCH ARTICLE

Liquid metal compartmented by polyphenol-mediated nanointerfaces enables high-performance thermal management on electronic devices

Author information +
History +

Abstract

The exponentially increasing heat generation in electronic devices, induced by high power density and miniaturization, has become a dominant issue that affects carbon footprint, cost, performance, reliability, and lifespan. Liquid metals (LMs) with high thermal conductivity are promising candidates for effective thermal management yet are facing pump-out and surface-spreading issues. Confinement in the form of metallic particles can address these problems, but apparent alloying processes elevate the LM melting point, leading to severely deteriorated stability. Here, we propose a facile and sustainable approach to address these challenges by using a biogenic supramolecular network as an effective diffusion barrier at copper particle-LM (EGaIn/Cu@TA) interfaces to achieve superior thermal conduction. The supramolecular network promotes LM stability by reducing unfavorable alloying and fluidity transition. The EGaIn/Cu@TA exhibits a record-high metallic-mediated thermal conductivity (66.1 W m-1 K-1) and fluidic stability. Moreover, mechanistic studies suggest the enhanced heat flow path after the incorporation of copper particles, generating heat dissipation suitable for computer central processing units, exceeding that of commercial silicone. Our results highlight the prospects of renewable macromolecules isolated from biomass for the rational design of nanointerfaces based on metallic particles and LM, paving a new and sustainable avenue for high-performance thermal management.

Keywords

Electronic devices / High thermal conductivity / Liquid metals / Natural polyphenols / Thermal management

Cite this article

Download citation ▾
Chaojun Zhang, Yang Tang, Tianyu Guo, Yizhou Sang, Ding Li, Xiaoling Wang, Orlando J. Rojas, Junling Guo. Liquid metal compartmented by polyphenol-mediated nanointerfaces enables high-performance thermal management on electronic devices. InfoMat, 2024, 6(1): e12466 https://doi.org/10.1002/inf2.12466

References

[1]
Jones N. How to stop data centres from gobbling up the world's electricity. Nature. 2018;561(7722):163-167.
[2]
van Erp R, Soleimanzadeh R, Nela L, Kampitsis G, Matioli E. Co-designing electronics with microfluidics for more sustainable cooling. Nature. 2020;585(7824):211-216.
[3]
Gebrael T, Li J, Gamboa AR, et al. High-efficiency cooling via the monolithic integration of copper on electronic devices. Nat Electron. 2022;5(6):394-402.
[4]
Ma R, Zhang Z, Tong K, et al. Highly efficient electrocaloric cooling with electrostatic actuation. Science. 2017;357(6356):1130-1134.
[5]
Chen J, Xu X, Zhou J, Li B. Interfacial thermal resistance: past, present, and future. Rev Mod Phys. 2022;94(2):25002.
[6]
Hansson J, Nilsson TMJ, Ye L, Liu J. Novel nanostructured thermal interface materials: a review. Int Mater Rev. 2017;63(1):22-45.
[7]
He H, Peng W, Liu J, et al. Microstructured BN composites with internally designed high thermal conductivity paths for 3D electronic packaging. Adv Mater. 2022;34(38):e2205120.
[8]
Zang Y, Di C, Geng Z, et al. Giant thermal transport tuning at a metal/ferroelectric interface. Adv Mater. 2022;34(3):e2105778.
[9]
Wu K, Wang J, Liu D, et al. Highly thermoconductive, thermostable, and super-flexible film by engineering 1d rigid rod-like aramid nanofiber/2d boron nitride nanosheets. Adv Mater. 2020;32(8):e1906939.
[10]
Liu P, Li X, Min P, et al. 3D lamellar-structured graphene aerogels for thermal interface composites with high through-plane thermal conductivity and fracture toughness. Nano-Micro Lett. 2020;13(1):22.
[11]
Gizewski J, Sande L, Holtmann D. Contribution of electrobiotechnology to sustainable development goals. Trends Biotechnol. 2023.
[12]
Su Z, Yang Y, Huang Q, et al. Designed biomass materials for “green” electronics: a review of materials, fabrications, devices, and perspectives. Prog Mater Sci. 2022;125:100917.
[13]
Zhang X, Li J, Gao Q, et al. Nerve-fiber-inspired construction of 3D graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv Funct Mater. 2023;33(18):2213274.
[14]
Wang X, Lu C, Rao W. Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications. Appl Therm Eng. 2021;192:116937.
[15]
Chen S, Deng Z, Liu J. High performance liquid metal thermal interface materials. Nanotechnology. 2021;32(9):092001.
[16]
Haake A, Tutika R, Schloer GM, Bartlett MD, Markvicka EJ. On-demand programming of liquid metal-composite microstructures through direct ink write 3D printing. Adv Mater. 2022;34(20):e2200182.
[17]
Uppal A, Kong W, Rana A, Wang RY, Rykaczewski K. Enhancing thermal transport in silicone composites via bridging liquid metal fillers with reactive metal co-fillers and matrix viscosity tuning. ACS Appl Mater Interfaces. 2021;13(36):43348-43355.
[18]
Huang K, Qiu W, Ou M, Liu X, Liao Z, Chu S. An anti-leakage liquid metal thermal interface material. RSC Adv. 2020;10(32):18824-18829.
[19]
Han Y, Simonsen LE, Malakooti MH. Printing liquid metal elastomer composites for high-performance stretchable thermoelectric generators. Adv Energy Mater. 2022;12(34):2201413.
[20]
Bark H, Tan MWM, Thangavel G, Lee PS. Deformable high loading liquid metal nanoparticles composites for thermal energy management. Adv Energy Mater. 2021;11(35):2101387.
[21]
Haque ABMT, Tutika R, Byrum RL, Bartlett MD. Programmable liquid metal microstructures for multifunctional soft thermal composites. Adv Funct Mater. 2020;30(25):2000832.
[22]
Bartlett MD, Kazem N, Powell-Palm MJ, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci U S A. 2017;114(9):2143-2148.
[23]
Krings EJ, Zhang H, Sarin S, Shield JE, Ryu S, Markvicka EJ. Lightweight, thermally conductive liquid metal elastomer composite with independently controllable thermal conductivity and density. Small. 2021;17(52):e2104762.
[24]
Ki S, Shim J, Oh S, et al. Gallium-based liquid metal alloy incorporating oxide-free copper nanoparticle clusters for high-performance thermal interface materials. Int J Heat Mass Transfer. 2021;170:121012.
[25]
Tang J, Zhao X, Li J, Guo R, Zhou Y, Liu J. Gallium-based liquid metal amalgams: transitional-state metallic mixtures (transm2ixes) with enhanced and tunable electrical, thermal, and mechanical properties. ACS Appl Mater Interfaces. 2017;9(41):35977-35987.
[26]
Xing W, Wang H, Chen S, et al. Gallium-based liquid metal composites with enhanced thermal and electrical performance enabled by structural engineering of filler. Adv Eng Mater. 2022;24(9):2101678.
[27]
Kuang H, Wu B, Wang J, et al. Wettability and thermal contact resistance of thermal interface material composited by gallium-based liquid metal on copper foam. Int J Heat Mass Transfer. 2022;199:123444.
[28]
Lu Y, Che Z, Sun F, et al. Mussel-inspired multifunctional integrated liquid metal-based magnetic suspensions with rheological, magnetic, electrical, and thermal reinforcement. ACS Appl Mater Interfaces. 2021;13(4):5256-5265.
[29]
Kong W, Wang Z, Wang M, et al. Oxide-mediated formation of chemically stable tungsten-liquid metal mixtures for enhanced thermal interfaces. Adv Mater. 2019;31(44):1904309.
[30]
Lin Z, Liu H, Li Q, et al. High thermal conductivity liquid metal pad for heat dissipation in electronic devices. Appl Phys A. 2018;124(5):368.
[31]
Wang C, Gong Y, Cunning BV, et al. A general approach to composites containing nonmetallic fillers and liquid gallium. Sci Adv. 2021;7(1):eabe3767.
[32]
Kwon KY, Cheeseman S, Frias-De-Diego A, et al. A liquid metal mediated metallic coating for antimicrobial and antiviral fabrics. Adv Mater. 2021;33(45):2104298.
[33]
Meng J, Li C. Planting CuGa2 seeds assisted with liquid metal for selective wrapping deposition of lithium. Energy Storage Mater. 2021;37:466-475.
[34]
Tutika R, Zhou SH, Napolitano RE, Bartlett MD. Mechanical and functional tradeoffs in multiphase liquid metal, solid particle soft composites. Adv Funct Mater. 2018;28(45):1804336.
[35]
Wang H, Xing W, Chen S, Song C, Dickey MD, Deng T. Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker. Adv Mater. 2021;33(43):2103104.
[36]
Wang Y, He Y, Wang Q, et al. Microporous membranes for ultrafast and energy-efficient removal of antibiotics through polyphenol-mediated nanointerfaces. Matter. 2023;6(1):260-273.
[37]
Pan J, Gong G, Wang Q, et al. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nat Commun. 2022;13(1):2117.
[38]
Qiu X, Wang X, He Y, et al. Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries. Sci Adv. 2021;7(37):eabh3482.
[39]
Luo W, Xiao G, Tian F, et al. Engineering robust metal-phenolic network membranes for uranium extraction from seawater. Energy Environ Sci. 2019;12(2):607-614.
[40]
Guo J, Tardy BL, Christofferson AJ, et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat Nanotechnol. 2016;11(12):1105-1111.
[41]
Guo J, Ping Y, Ejima H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew Chem Int Ed. 2014;53(22):5546-5551.
[42]
Ejima H, Richardson JJ, Liang K, et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science. 2013;341(6142):154-157.
[43]
Xu Y, Wang X, Zhou J, et al. Molecular engineered conjugated polymer with high thermal conductivity. Sci Adv. 2018;4(3):eaar3031.
[44]
Centurion F, Namivandi-Zangeneh R, Flores N, et al. Liquid metal-triggered assembly of phenolic nanocoatings with antioxidant and antibacterial properties. ACS Appl Nano Mater. 2021;4(3):2987-2998.
[45]
Seshadri I, Esquenazi GL, Cardinal T, Borca-Tasciuc T, Ramanath G. Microwave synthesis of branched silver nanowires and their use as fillers for high thermal conductivity polymer composites. Nanotechnology. 2016;27(17):175601.
[46]
Zeng X, Zeng X, Fan J, et al. Ultrahigh energy-dissipation thermal interface materials through anneal-induced disentanglement. ACS Mater Lett. 2022;4(5):874-881.
[47]
Park M, Kang D-G, Ko H, et al. Molecular engineering of a porphyrin-based hierarchical superstructure: planarity control of a discotic metallomesogen for high thermal conductivity. Mater Horiz. 2020;7(10):2635-2642.
[48]
Wei B, Chen X, Yang S. Construction of a 3D aluminum flake framework with a sponge template to prepare thermally conductive polymer composites. J Mater Chem A. 2021;9(17):10979-10991.
[49]
Wang Z, Fan J, He D, et al. Superior stretchable, low thermal resistance and efficient self-healing composite elastomers for thermal management. J Mater Chem A. 2022;10(41):21923-21932.
[50]
Wang S, Cheng Y, Wang R, Sun J, Gao L. Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Appl Mater Interfaces. 2014;6(9):6481-6486.
[51]
Yuan H, Wang Y, Li T, et al. Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire. Compos Sci Technol. 2018;164:153-159.
[52]
Balachander N, Seshadri I, Mehta RJ, et al. Nanowire-filled polymer composites with ultrahigh thermal conductivity. Appl Phys Lett. 2013;102(9):093117.
[53]
Jia L-C, Jin Y-F, Ren J-W, Zhao L-H, Yan D-X, Li Z-M. Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J Mater Chem C. 2021;9(8):2904-2911.
[54]
Zhao L, Liu H, Chen X, et al. Liquid metal nano/micro-channels as thermal interface materials for efficient energy saving. J Mater Chem C. 2018;6(39):10611-10617.
[55]
Lü X, Tang H, Wang H, Meng X, Li F. Ultra-soft thermal self-healing liquid-metal-foamed composite with high thermal conductivity. Compos Sci Technol. 2022;226:109523.
[56]
Ralphs MI, Kemme N, Vartak PB, et al. In situ alloying of thermally conductive polymer composites by combining liquid and solid metal microadditives. ACS Appl Mater Interfaces. 2018;10(2):2083-2092.
[57]
Moon S, Kim H, Lee K, Park J, Kim Y, Choi SQ. 3D printable concentrated liquid metal composite with high thermal conductivity. iScience. 2021;24(10):103183.
[58]
Chen S, Xing W, Wang H, et al. A bottom-up approach to generate isotropic liquid metal network in polymer-enabled 3D thermal management. Chem Eng J. 2022;439:135674.
[59]
Doudrick K, Liu S, Mutunga EM, et al. Different shades of oxide: from nanoscale wetting mechanisms to contact printing of gallium-aased liquid metals. Langmuir. 2014;30(23):6867-6877.
[60]
Rahim MA, Centurion F, Han J, et al. Polyphenol-induced adhesive liquid metal inks for substrate-independent direct pen writing. Adv Funct Mater. 2020;31(10):2007336.
[61]
Ponce A, Brostoff LB, Gibbons SK, et al. Elucidation of the Fe(III) gallate structure in historical iron gall ink. Anal Chem. 2016;88(10):5152-5158.
[62]
Liang J, Tong K, Pei Q. A water-based silver-nanowire screen-print ink for the fabrication of stretchable conductors and wearable thin-film transistors. Adv Mater. 2016;28(28):5986-5996.
[63]
Tang J, Zhao X, Li J, Zhou Y, Liu J. Liquid metal phagocytosis: intermetallic wetting induced particle internalization. Adv Sci. 2017;4(5):1700024.
[64]
Park JE, Kang HS, Koo M, Park C. Autonomous surface reconciliation of a liquid-metal conductor micropatterned on a deformable hydrogel. Adv Mater. 2020;32(37):2002178.
[65]
Wang Y, Wang Z, Zhao L, et al. Lithium metal electrode with increased air stability and robust solid electrolyte interphase realized by silane coupling agent modification. Adv Mater. 2021;33(14):2008133.
[66]
Gandhi D, Tisch U, Singh B, Eizenberg M, Ramanath G. Ultraviolet-oxidized mercaptan-terminated organosilane nanolayers as diffusion barriers at Cu-silica interfaces. Appl Phys Lett. 2007;91(14):143503.
[67]
Regner KT, Sellan DP, Su Z, Amon CH, McGaughey AJH, Malen JA. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat Commun. 2013;4(1):1640.

RIGHTS & PERMISSIONS

2023 2023 The Authors. InfoMat published by UESTC and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/