Passive inversion of sound speed profile based on normal mode extraction of monochromatic signals

Qinghang Zeng , Xiaolei Li , Wei Gao

Intelligent Marine Technology and Systems ›› 2025, Vol. 3 ›› Issue (1) : 33

PDF
Intelligent Marine Technology and Systems ›› 2025, Vol. 3 ›› Issue (1) :33 DOI: 10.1007/s44295-025-00083-2
Research Paper
research-article

Passive inversion of sound speed profile based on normal mode extraction of monochromatic signals

Author information +
History +
PDF

Abstract

Sound speed is an important parameter in underwater acoustics, and the inversion of sound speed profiles (SSPs) has been a focus of numerous studies. In this paper, we propose a mode extraction-based SSP inversion (ME-SSPI) method. This method utilizes the relationship between SSP, mode parameters, and source velocity to simultaneously estimate SSP and source velocity from a monochromatic signal. Mode parameters (e.g., modal depth functions and horizontal wavenumbers) are extracted using acoustic data received by a vertical linear array. SSP estimation results are further optimized by a denoising autoencoder network. The effectiveness of the ME-SSPI method is verified by simulations.

Keywords

Acoustic inversion / Sound speed profile / Normal mode theory / Neural network

Cite this article

Download citation ▾
Qinghang Zeng, Xiaolei Li, Wei Gao. Passive inversion of sound speed profile based on normal mode extraction of monochromatic signals. Intelligent Marine Technology and Systems, 2025, 3(1): 33 DOI:10.1007/s44295-025-00083-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ballard MS, Becker KM. Inversion for range-dependent water column sound speed profiles on the New Jersey shelf using a linearized perturbative method. J Acoust Soc Am, 2010, 127(6): 3411-3421

[2]

Bianco M, Gerstoft P. Compressive acoustic sound speed profile estimation. J Acoust Soc Am, 2016, 139(3 EL90

[3]

Bianco M, Gerstoft P. Dictionary learning of sound speed profiles. J Acoust Soc Am, 2017, 141(3): 1749-1758

[4]

Choo Y, Seong W. Compressive sound speed profile inversion using beamforming results. Remote Sens, 2018, 10(5 704

[5]

CMEMS (2019) Global ocean physics reanalysis. https://doi.org/10.48670/moi-00021

[6]

Edelmann GF, Lingevitch JF, Gemba KL. Through the sensor estimation of sound speed profiles. J Acoust Soc Am, 2024, 155(2 13

[7]

Godin OA, Zabotin NA, Goncharov VV. Ocean tomography with acoustic daylight. Geophys Res Lett, 2010, 37(13 L13605

[8]

Huang CF, Gerstoft P, Hodgkiss WS. Effect of ocean sound speed uncertainty on matched-field geoacoustic inversion. J Acoust Soc Am, 2008, 123(6): 162-168

[9]

Huang W, Li D, Zhang H, Xu T, Yin F (2023a) A meta-deep-learning framework for spatio-temporal underwater SSP inversion. Front Mar Sci 10:1146333

[10]

Huang W, Liu M, Li D, Yin F, Chen H, Zhou J, et al.. Collaborating ray tracing and AI model for AUV-assisted 3-D underwater sound-speed inversion. IEEE J Oceanic Eng, 2021, 46(4): 1372-1390

[11]

Huang W, Xu T, Gao F, Song Z, Shu J, Zhang H (2023b) Estimation of underwater sound speed profile via meta learning with data-driven learning rate: an experimental result. In: WUWNet ’23: Proceedings of the 17th International Conference on Underwater Networks & Systems. ACM, pp 1–5

[12]

Huang W, Zhou J, Gao F, Wang J, Xu T (2023c) Experimental results of underwater sound speed profile inversion by few-shot multi-task learning. Remote Sens 16(1):167

[13]

Jensen FB, Kuperman WA, Porter MB, Schmidt H (2011) Computational ocean acoustics, 2nd edn. Springer, New York

[14]

LeBlanc LR, Middleton FH. An underwater acoustic sound velocity data model. J Acoust Soc Am, 1980, 67(6): 2055-2062

[15]

Li F, Wang K, Yang X, Zhang B, Zhang Y. Passive ocean acoustic thermometry with machine learning. Appl Acoust, 2021, 181 108167

[16]

Li F, Yang X, Zhang Y, Luo W, Gan W. Passive ocean acoustic tomography in shallow water. J Acoust Soc Am, 2019, 145(5): 2823-2830

[17]

Li F, Zhang R. Inversion for sound speed profile by using a bottom mounted horizontal line array in shallow water. Chin Phys Lett, 2010, 27(8 084303

[18]

Li Q, Khan S, Yang F, Xu Y, Zhang K. Compressive acoustic sound speed profile estimation in the Arabian Sea. Mar Geod, 2020, 43(6): 603-620

[19]

Li Q, Shi J, Li Z, Luo Y, Zhang K. Acoustic sound speed profile inversion based on orthogonal matching pursuit. Acta Oceanol Sin, 2019, 38(11): 149-157

[20]

Li XL, Wang PY. Modal wavenumber extraction by finite difference vertical linear array data. JASA Express Lett, 2021, 1(12 126002

[21]

Li ZL, He L, Zhang RH, Li FH, Yu YX, Lin P. Sound speed profile inversion using a horizontal line array in shallow water. Sci China-Phys Mech Astron, 2015, 58 014301

[22]

Munk W, Wunsch C. Ocean acoustic tomography: a scheme for large scale monitoring. Deep-Sea Res Part I-Oceanogr Res Pap, 1979, 26(2): 123-161

[23]

Neilsen TB, Westwood EK. Extraction of acoustic normal mode depth functions using vertical line array data. J Acoust Soc Am, 2002, 111(2): 748

[24]

Niu H, He L, Li Z, Zhang R, Nan M. Inversion for the environmental parameters in shallow water using warping transforms. Acta Acust, 2014, 39(11-10

[25]

Park C, Seong W, Gerstoft P, Hodgkiss WS. Geoacoustic inversion using backpropagation. IEEE J Ocean Eng, 2010, 35(4): 722-731

[26]

Qiu XF, Peng LH, Wang N, Zhu JX. Inversion method for sound velocity profile of eddy in deep ocean. China Ocean Eng, 2001, 15(4): 589-596

[27]

Radhakrishnan S, Anilkumar K. Inversion for water column sound speed profile from acoustic travel times using empirical orthogonal functions. J Acoust Soc Am, 2024, 156(6): 4061-4072

[28]

Saha P, Touret RX, Ollivier E, Jin J, McKinley M, Romberg J. Leveraging sound speed dynamics and generative deep learning for ray-based ocean acoustic tomography. JASA Express Lett, 2025, 5(4 040801

[29]

Shang EC. Ocean acoustic tomography based on adiabatic mode theory. J Acoust Soc Am, 1989, 85(4): 1531-1537

[30]

Skarsoulis EK, Athanassoulis GA, Send U. Ocean acoustic tomography based on peak arrivals. J Acoust Soc Am, 1996, 100(2): 797-813

[31]

Tan TW, Godin OA. Passive acoustic characterization of sub-seasonal sound speed variations in a coastal ocean. J Acoust Soc Am, 2021, 150(4): 2717-2737

[32]

Tang J, Yang S. Sound speed profile in ocean inverted by using travel time. J Harbin Eng Univ, 2006, 27(5): 733-736

[33]

Tolstoy A, Sotirin B. Acoustic tomography via matched field processing. J Acoust Soc Am, 1995, 89(5): 393-406

[34]

Walker JL, Zeng ZM, Zobell VM, Frasier KE. Underwater sound speed profile estimation from vessel traffic recordings and multi-view neural networks. J Acoust Soc Am, 2024, 155(5): 3015-3026

[35]

Wang K, Li F, Yang X (2022) Shallow water passive acoustic tomography using dictionary learning. Tech Acoust 41(5):637–641

[36]

Wu L, Song C, Tu Q, Wu Z, Shi J, Yuan F. Sound speed profile inversion based on distributed networked underwater sensors system and graph attention networks. J Acoust Soc Am, 2025, 157(4): 2956-2981

[37]

Zhang M, Xu W, Xu Y. Inversion of the sound speed with radiated noise of an autonomous underwater vehicle in shallow water waveguides. IEEE J Ocean Eng, 2016, 41(1): 204-216

[38]

Zhang W (2013) Inversion of sound speed profile in three-dimensional shallow water. PhD thesis, Harbin Engineering University, Harbin

[39]

Zhang Z, Ma Y, Yang K, Yan S. Inversion for sound speed profile in shallow water using matched-beam processing. Acta Acust, 2005, 30(2): 103-107

Funding

National Natural Science Foundation of China(12474444)

Open Research Fund of Hanjiang National Laboratory(KF2024041)

RIGHTS & PERMISSIONS

The Author(s)

PDF

27

Accesses

0

Citation

Detail

Sections
Recommended

/