Hybrid intelligence model for traffic management in intelligent transportation systems

Impana Appaji , Pandian Raviraj

International Journal of Systematic Innovation ›› 2025, Vol. 9 ›› Issue (3) : 20 -30.

PDF (1844KB)
International Journal of Systematic Innovation ›› 2025, Vol. 9 ›› Issue (3) :20 -30. DOI: 10.6977/IJoSI.202506_9(3).0003
ARTICLE
research-article

Hybrid intelligence model for traffic management in intelligent transportation systems

Author information +
History +
PDF (1844KB)

Abstract

A typical traffic environment in an intelligent transportation system (ITS) involves various infrastructural units that generate a vast amount of sophisticated traffic data. Such a form of complex data is challenging to analyze and hence poses a potential issue in designing an effective and responsive traffic management system. Therefore, this paper develops an analytical modeling approach to harness the potential of artificial intelligence and computational intelligence. The scheme presents a simplified predictive approach that is meant to mitigate current issues and promote intelligent traffic management. The simulated outcome of the study showcases that the proposed scheme offers a significant advantage in its predictive performance in ITS.

Keywords

Artificial Intelligence / Computational Intelligence Technologies / Intelligent Transportation System / Traffic Management

Cite this article

Download citation ▾
Impana Appaji, Pandian Raviraj. Hybrid intelligence model for traffic management in intelligent transportation systems. International Journal of Systematic Innovation, 2025, 9(3): 20-30 DOI:10.6977/IJoSI.202506_9(3).0003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akhtar, M., & Moridpour, S. (2021). A review of traffic congestion prediction using artificial intelligence. Journal of Advanced Transportation, 2021, 1-18. https://doi.org/10.1155/2021/8878011

[2]

Barodi, A., Zemmouri, A., Bajit, A., Benbrahim, M., & Tamtaoui, A. (2023). Intelligent transportation system based on smart soft-sensors to analyze road traffic and assist driver behavior applicable to smart cities. Microprocessors and Microsystems, 100, 104830. https://doi.org/10.1016/j.micpro.2023.104830

[3]

Benterki, A., Boukhnifer, M., Judalet, V., & Maaoui, C. (2020). Artificial intelligence for vehicle behavior anticipation: Hybrid approach based on maneuver classification and trajectory prediction. IEEE Access, 8, 56992-57002. https://doi.org/10.1109/access.2020.2982170

[4]

Bıyık, C., & Yigitcanlar, T. (2020). Intelligent transport systems in Turkish urban environments: a comprehensive review. International Journal of Knowledge-Based Development, 11(4), 382. https://doi.org/10.1504/ijkbd.2020.115037

[5]

Chavhan, S., Gupta, D., Chidambaram, R.K., Khanna, A., & Rodrigues, J.J.P.C. (2021). A novel emergent intelligence technique for public transport vehicle allocation problem in a dynamic transportation system. IEEE IEEE Transactions on Intelligent Transportation Systems, 22(8), 5389-5402. https://doi.org/10.1109/tits.2020.3011198

[6]

Chen, Z.G., Zhan, Z.H., Kwong, S., & Zhang, J. (2022). Evolutionary computation for intelligent transportation in smart cities: A survey [review article]. IEEE Computational Intelligence Magazine, 17(2), 83-102. https://doi.org/10.1109/mci.2022.3155330

[7]

Chowdhury, A., Kaisar, S., Khoda, M.E., Naha, R., Khoshkholghi, M.A., & Aiash, M. (2023). IoT-based emergency vehicle services in Intelligent transportation system. Sensors (Basel, Switzerland), 23(11), 5324. https://doi.org/10.3390/s23115324

[8]

Damaj, I., Al Khatib, S.K., Naous, T., Lawand, W., Abdelrazzak, Z.Z., & Mouftah, H.T. (2022). Intelligent transportation systems: A survey on modern hardware devices for the era of machine learning. Journal of King Saud University-Computer and Information Sciences, 34(8), 5921-5942. https://doi.org/10.1016/j.jksuci.2021.07.020

[9]

Eom, M., & Kim, B.I. (2020). The traffic signal control problem for intersections: A review. European Transport Research Review, 12(1), 50. https://doi.org/10.1186/s12544-020-00440-8

[10]

Haghighat, A.K., Ravichandra-Mouli, V., Chakraborty, P., Esfandiari, Y., Arabi, S., & Sharma, A. (2020). Applications of deep learning in intelligent trans- portation systems. Journal of Big Data Analytics in Transportation, 2(2), 115-145. https://doi.org/10.1007/s42421-020-00020-1

[11]

Husnain, G., Anwar, S., Sikander, G., Ali, A., & Lim, S. (2023). A bio-inspired cluster optimization schema for efficient routing in vehicular ad hoc networks (VANETs). Energies, 16(3), 1456. https://doi.org/10.3390/en16031456

[12]

Iliopoulou, C., & Kepaptsoglou, K. (2019). Combining ITS and optimization in public transportation planning: state of the art and future research paths. European Transport Research Review, 11(1), 27. https://doi.org/10.1186/s12544-019-0365-5

[13]

Jain, R., Chakravarthi, M.K., Kumar, P.K., Hemake-Savulu, O., Ramirez-Asis, E., Pelaez-Diaz, G., et al. (2022). Internet of Things-based smart vehicles design of bio-inspired algorithms using artificial intelligence charging system. Nonlinear Engineering, 11(1), 582-589. https://doi.org/10.1515/nleng-2022-0242

[14]

Karthikeyan, H., & Usha, G. (2023). A secured IoT-based intelligent transport system (IoT-ITS) framework based on cognitive science. Soft Computing, 28, 13929-13939. https://doi.org/10.1007/s00500-023-08410-7

[15]

Kołodziej, J., Hopmann, C., Coppa, G., Grzonka, D., & Widłak, A. (2022). Intelligent transportation systems-models, challenges, security aspects. In: Cybersecurity of Digital Service Chains. Berlin: Springer International Publishing. pp56-82.

[16]

Kumari, S., Kumari, S., Vikram, V., Kumari, S., & Gouda, S.K. (2020). Smart traffic management system using IoT and machine learning approach. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3647656

[17]

Lee, S., Lim, D.E., Kang, Y., & Kim, H.J. (2021). Clustered multi-task sequence-to-sequence learning for autonomous vehicle repositioning. IEEE Access, 9, 14504-14515. https://doi.org/10.1109/access.2021.3051763

[18]

Li, C., Zhao, H., Huang, K., & Chen, Y.H. (2021). Optimal design for anti-skid control of electric vehicles by fuzzy approach. Chinese Journal of Me-Chanical Engineering, 34(1), 125. https://doi.org/10.1186/s10033-021-00642-8

[19]

Li, S., Shu, K., Chen, C., & Cao, D. (2021). Planning and decision-making for connected autonomous vehicles at road intersections: A review. Chinese Journal of Mechanical Engineering, 34(1), 133. https://doi.org/10.1186/s10033-021-00639-3

[20]

Liu, Y., Xu, Q., Guo, H., & Zhang, H. (2022). A type-2 fuzzy approach to driver-automation shared driving lane keeping control of semi-autonomous vehicles under imprecise premise variable. Chinese Journal of Mechanical Engineering, 35(1), 46. https://doi.org/10.1186/s10033-022-00706-3

[21]

Lu, Y., Lang, M., Sun, Y., & Li, S. (2020). A fuzzy intercontinental road-rail multimodal routing model with time and train capacity uncertainty and fuzzy programming approaches. IEEE Access, 8, 27532-27548. https://doi.org/10.1109/access.2020.2971027

[22]

Lytras, M.D., Chui, K.T., & Liu, R.W. (2020). Moving towards intelligent transportation via artificial intelligence and internet-of-things. Sensors (Basel, Switzerland), 20(23), 6945. https://doi.org/10.3390/s20236945

[23]

Malek, Y. N., Najib, M., Bakhouya, M., & Essaaidi, M. (2021). Multivariate deep learning approach for electric vehicle speed forecasting. Big Data Min. Anal., 4(1), 56-64. https://doi.org/10.26599/bdma.2020.9020027

[24]

Mohammadi, S., & Farahani, G. (2020). Computational intelligence-based connectivity restoration in wireless sensor and actor networks. EURASIP Journal on Wireless Communications and Networking, 2020(1), 198. https://doi.org/10.1186/s13638-020-01831-0

[25]

Njoku, J.N., Nwakanma, C.I., Amaizu, G.C., & Kim, D.S. (2023). Prospects and challenges of Metaverse application in data‐driven intelligent transportation systems. IET Intelligent Transport Systems, 17(1), 1-21. https://doi.org/10.1049/itr2.12252

[26]

Ojala, R., Vepsalainen, J., Hanhirova, J., Hirvisalo, V., & Tammi, K. (2020). Novel convolutional neural network-based roadside unit for accurate pedestrian localisation. IEEE Transactions on Intelligent Transportation Systems, 21(9), 3756-3765. https://doi.org/10.1109/tits.2019.2932802

[27]

Qadri, S.S.S.M., Gökçe, M.A., & Öner, E. (2020). State-of-art review of traffic signal control methods: Challenges and opportunities. European Transport Research Review, 12(1), 1-23. https://doi.org/10.1186/s12544-020-00439-1

[28]

Rajkumar, S.C., & Deborah, L.J. (2021). An improved public transportation system for effective usage of vehicles in intelligent transportation system. International Journal of Communication Systems, 34(13), e4910. https://doi.org/10.1002/dac.4910

[29]

Sayed, S. A., Abdel-Hamid, Y., & Hefny, H.A. (2023). Artificial intelligence-based traffic flow prediction: A comprehensive review. Journal of Electrical Systems and Information Technology, 10(1), 13. https://doi.org/10.1186/s43067-023-00081-6

[30]

Servizi, V., Pereira, F.C., Anderson, M.K., & Nielsen, O.A. (2021). Transport behavior-mining from smartphones: A review. European Transport Research Review, 13(1), 57. https://doi.org/10.1186/s12544-021-00516-z

[31]

Severino, A., Curto, S., Barberi, S., Arena, F., & Pau, G. (2021). Autonomous Vehicles: An analysis both on their distinctiveness and the potential impact on urban transport systems. Applied Sciences (Basel, Switzerland), 11(8), 3604. https://doi.org/10.3390/app11083604

[32]

Shaaban, K., Elamin, M., & Alsoub, M. (2021). Intelligent transportation systems in a developing country: Benefits and challenges of implementation. Transportation Research Procedia, 55, 1373-1380. https://doi.org/10.1016/j.trpro.2021.07.122

[33]

Sharma, V., Kumar, L., & Sergeyev, S. (2021). Recent developments and challenges in intelligent transportation systems (ITS)-A survey. In: Algorithms for Intelligent Systems. Berlin: Springer Singapore. pp37-44.

[34]

Shi, Q., Wang, M., He, Z., Yao, C., Wei, Y., & He, L. (2022). A fuzzy-based sliding mode control approach for acceleration slip regulation of battery electric vehicle. Chinese Journal of Mechanical Engineering, 35(1), 72. https://doi.org/10.1186/s10033-022-00729-w

[35]

Simić V., Lazarević D., & Dobrodolac, M. (2021). Picture fuzzy WASPAS method for selecting last-mile delivery mode: A case study of Belgrade. European Transport Research Review, 13(1), 43. https://doi.org/10.1186/s12544-021-00501-6

[36]

Tak, S., Lee, J.D., Song, J., & Kim, S. (2021). Development of AI-based vehicle detection and tracking system for C-ITS application. Journal of Advanced Transportation, 2021, 1-15. https://doi.org/10.1155/2021/4438861

[37]

Tang, J., Zhang, X., Yin, W., Zou, Y., & Wang, Y. (2021). Missing data imputation for traffic flow based on combination of fuzzy neural network and rough set theory. Journal of Intelligent Transportation Systems, 25(5), 439-454. https://doi.org/10.1080/15472450.2020.1713772

[38]

Wei, H., Xu, N., Zhang, H., Zheng, G., Zang, X., Chen, C., et al. (2019). CoLight: Learning network-level cooperation for traffic signal control. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management.

[39]

Zhou, F., Yang, Q., Zhong, T., Chen, D., & Zhang, N.(2021). Variational graph neural networks for road traffic prediction in intelligent transportation systems. IEEE Transactions on Industrial Informatics, 17(4), 2802-2812. https://doi.org/10.1109/tii.2020.3009280

[40]

Zulkarnain, & Putri, T.D. (2021). Intelligent transportation systems (ITS): A systematic review using a Natural Language Processing (NLP) approach. Heliyon, 7(12), e08615. https://doi.org/10.1016/j.heliyon.2021.e08615

PDF (1844KB)

60

Accesses

0

Citation

Detail

Sections
Recommended

/