Structure insight into FtsZ function maintaining under acid stress of Streptococcus mutans

Yuxing Chen , Yongliang Li , Jiahao Niu , Liuchang Yang , Yaqi Chi , Xue Cai , Fengjiao Xin , Jie Zhang , Xianyang Fang , Yiqin Gao , Manas Mondal , Xiaoyan Wang

International Journal of Oral Science ›› 2026, Vol. 18 ›› Issue (1) : 3

PDF
International Journal of Oral Science ›› 2026, Vol. 18 ›› Issue (1) :3 DOI: 10.1038/s41368-025-00400-9
Article
research-article

Structure insight into FtsZ function maintaining under acid stress of Streptococcus mutans

Author information +
History +
PDF

Abstract

Understanding the acid resistance mechanism of S. mutans is crucial for preventing dental caries. FtsZ is the core protein for cell division in bacteria that can polymerize into Z-rings and drive cytokinesis. Our previous study revealed that the FtsZ in S. mutans (SmFtsZ) has higher self-assembly and GTPase activity under acidic stress, which may be responsible for acid resistance and cariogenesis of S. mutans. However, the functional structure mechanism of SmFtsZ under low pH conditions is still unclear. Here, we further reported the crystal structure of S. mutans FtsZ, revealing a unique lateral interface. Through protein polymerization and GTPase activity assay, we experimentally demonstrated that the mutation of Arg68 on this lateral interface significantly reduced the functional activity of FtsZ in an acidic environment. The phenotype assay and rat caries model further showed that the mutation of Arg68 effectively inhibited the acid resistance of S. mutans and the occurrence and progress of dental caries in vivo. By employing a molecular dynamics simulation analysis, we conclude that the mutation of Arg68 disrupts the conformation change necessary for SmFtsZ polymerization under acidic conditions. Our study proposes a novel mechanism to maintain FtsZ function in bacteria and could be a potential target for antimicrobial drugs to inhibit the growth of S. mutans in acidic environments.

Cite this article

Download citation ▾
Yuxing Chen, Yongliang Li, Jiahao Niu, Liuchang Yang, Yaqi Chi, Xue Cai, Fengjiao Xin, Jie Zhang, Xianyang Fang, Yiqin Gao, Manas Mondal, Xiaoyan Wang. Structure insight into FtsZ function maintaining under acid stress of Streptococcus mutans. International Journal of Oral Science, 2026, 18(1): 3 DOI:10.1038/s41368-025-00400-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet, 2007, 369: 51-59

[2]

GBD 2019 Diseases and Injuries Collaborators.. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, 396: 1204-1222

[3]

Krzyściak W, Jurczak A, Kościelniak D, Bystrowska B, Skalniak A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33: 499-515

[4]

Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol. Rev., 1986, 50: 353-380

[5]

Baker JL, Faustoferri RC, Quivey RG. Acid-adaptive mechanisms of Streptococcus mutans-the more we know, the more we don’t. Mol. Oral. Microbiol., 2017, 32: 107-117

[6]

Matsui R, Cvitkovitch D. Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol., 2010, 5: 403-417

[7]

Iwami Y, et al.. Intracellular and extracellular pHs of Streptococcus mutans after addition of acids: loading and efflux of a fluorescent pH indicator in streptococcal cells. Oral. Microbiol. Immunol., 2002, 17: 239-244

[8]

Buddelmeijer N, Beckwith J. Assembly of cell division proteins at the E. coli cell center. Curr. Opin. Microbiol., 2002, 5: 553-557

[9]

Vanhille-Campos C, et al.. Self-organization of mortal filaments and its role in bacterial division ring formation. Nat. Phys., 2024, 20: 1670-1678

[10]

RayChaudhuri D, Park JT. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature, 1992, 359: 251-254

[11]

Erickson HP, Anderson DE, Osawa M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol. Mol. Biol. Rev., 2010, 74: 504-528

[12]

Du S, Lutkenhaus J. At the heart of bacterial cytokinesis: the Z ring. Trends Microbiol., 2019, 27: 781-791

[13]

Haeusser DP, Margolin W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat. Rev. Microbiol., 2016, 14: 305-319

[14]

Mendieta J, et al.. Structural and functional model for ionic (K+/Na+) and pH dependence of GTPase activity and polymerization of FtsZ, the prokaryotic ortholog of tubulin. J. Mol. Biol., 2009, 390: 17-25

[15]

Concha-Marambio L, Maldonado P, Lagos R, Monasterio O, Montecinos-Franjola F. Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration. PLoS ONE, 2017, 12: e0185707

[16]

Chen Y, Erickson HP. FtsZ filament dynamics at steady state: subunit exchange with and without nucleotide hydrolysis. Biochemistry, 2009, 48: 6664-6673

[17]

Löwe J, Amos LA. Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J., 1999, 18: 2364-2371

[18]

LaBreck CJ, May S, Viola MG, Conti J, Camberg JL. The protein chaperone ClpX targets native and non-native aggregated substrates for remodeling, disassembly, and degradation with ClpP. Front. Mol. Biosci., 2017, 4: 26

[19]

Tomoyasu T, et al.. The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J. Bacteriol., 2002, 184: 645-653

[20]

Balasubramanian A, Markovski M, Hoskins JR, Doyle SM, Wickner S. Hsp90 of E. coli modulates assembly of FtsZ, the bacterial tubulin homolog. Proc. Natl. Acad. Sci. USA, 2019, 116: 12285-12294

[21]

DiBiasio EC, et al.. The stress-active cell division protein ZapE alters FtsZ filament architecture to facilitate division in Escherichia coli. Front. Microbiol., 2021, 12 733085

[22]

Marteyn BS, et al.. ZapE is a novel cell division protein interacting with FtsZ and modulating the Z-ring dynamics. mBio., 2014, 5: e00022-00014

[23]

Chen Y, et al.. Streptococcus mutans cell division protein FtsZ has higher GTPase and polymerization activities in acidic environment. Mol. Oral. Microbiol., 2022, 37: 97-108

[24]

Swails JM, York DM, Roitberg AE. Constant pH replica exchange molecular dynamics in explicit solvent using discrete protonation states: implementation, testing, and validation. J. Chem. Theory Comput., 2014, 10: 1341-1352

[25]

Miller BR, et al.. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput., 2012, 8: 3314-3321

[26]

Jaiswal R, et al.. E93R substitution of Escherichia coli FtsZ induces bundling of protofilaments, reduces GTPase activity, and impairs bacterial cytokinesis. J. Biol. Chem., 2010, 285: 31796-31805

[27]

Fujita J, et al.. Structures of a FtsZ single protofilament and a double-helical tube in complex with a monobody. Nat. Commun., 2023, 14 4073

[28]

Pancino N, Gallegati C, Romagnoli F, Bongini P, Bianchini M. Protein-protein interfaces: a graph neural network approach. Int. J. Mol. Sci., 2024, 25: 5870

[29]

Beuria TK, Shah JH, Santra MK, Kumar V, Panda D. Effects of pH and ionic strength on the assembly and bundling of FtsZ protofilaments: a possible role of electrostatic interactions in the bundling of protofilaments. Int. J. Biol. Macromol., 2006, 40: 30-39

[30]

Ramirez-Diaz DA, et al.. Treadmilling analysis reveals new insights into dynamic FtsZ ring architecture. PLoS Biol., 2018, 16: e2004845

[31]

Yang X, et al.. GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science, 2017, 355: 744-747

[32]

Bisson-Filho AW, et al.. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science, 2017, 355: 739-743

[33]

Biteen JS, Goley ED, Shapiro L, Moerner WE. Three-dimensional super-resolution imaging of the midplane protein FtsZ in live Caulobacter crescentus cells using astigmatism. Chemphyschem Eur. J. Chem. Phys. Phys. Chem., 2012, 13: 1007-1012

[34]

Wagstaff JM, et al.. Diverse cytomotive actins and tubulins share a polymerization switch mechanism conferring robust dynamics. Sci. Adv., 2023, 9: eadf3021

[35]

Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol., 2018, 26: 229-242

[36]

Wang S, et al.. Theaflavin-3,3’-digallate suppresses biofilm formation, acid production, and acid tolerance in Streptococcus mutans by targeting virulence factors. Front. Microbiol., 2019, 10: 1705

[37]

Zhao W, Li W, Lin J, Chen Z, Yu D. Effect of sucrose concentration on sucrose-dependent adhesion and glucosyltransferase expression of S. mutans in children with severe early-childhood caries (S-ECC). Nutrients, 2014, 6: 3572-3586

[38]

Abramson J, et al.. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 2024, 630: 493-500

[39]

Zhang Y, et al.. Long non-coding subgenomic flavivirus RNAs have extended 3D structures and are flexible in solution. EMBO Rep., 2019, 20: e47016

[40]

Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr., 2003, 36: 1277-1282

[41]

Rambo RP, Tainer JA. Accurate assessment of mass, models and resolution by small-angle scattering. Nature, 2013, 496: 477-481

[42]

Tao S, et al.. A dentin biomimetic remineralization material with an ability to stabilize collagen. Small, 2022, 18: e2203644

[43]

Yang B, et al.. pH-responsive DMAEM Monomer for dental caries inhibition. Dent. Mater., 2023, 39: 497-503

[44]

Yang J, et al.. Second-generation Flagellin-rPAc fusion protein, KFD2-rPAc, shows high protective efficacy against dental caries with low potential side effects. Sci. Rep., 2017, 7 11191

[45]

Keyes PH. Dental caries in the molar teeth of rats. II. A method for diagnosing and scoring several types of lesions simultaneously. J. Dent. Res., 1958, 37: 1088-1099

[46]

Hornak V, et al.. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65: 712-725

[47]

Essmann U, et al.. A smooth particle mesh Ewald method. J. Chem. Phys., 1995, 103: 8577-8593

[48]

Onufriev A, Bashford D, Case DA. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 2004, 55: 383-394

[49]

Elber R, Ruymgaart AP, Hess B. SHAKE parallelization. Eur. Phys. J. Spec. Top., 2011, 200: 211-223

[50]

Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res., 2004, 14: 1188-1190

[51]

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 2013, 30: 2725-2729

Funding

National Natural Science Foundation of China (National Science Foundation of China)(82001039)

Beijing Natural Science Foundation: 7222220, Research Foundation of Peking University School and Hospital of Stomatology: PKUSS20230117, National Natural Science Foundation of China (82001039), and Young Elite Scientist Sponsorship Program by cst(No. 2019QNRC001 to YL.L)

RIGHTS & PERMISSIONS

The Author(s)

PDF

42

Accesses

0

Citation

Detail

Sections
Recommended

/