Community dynamics during de novo colonization of the nascent peri-implant sulcus

Tamires Pereira Dutra , Nicolas Robitaille , Khaled Altabtbaei , Shareef M. Dabdoub , Purnima S. Kumar

International Journal of Oral Science ›› 2025, Vol. 17 ›› Issue (1) : 37

PDF
International Journal of Oral Science ›› 2025, Vol. 17 ›› Issue (1) : 37 DOI: 10.1038/s41368-025-00367-7
Article

Community dynamics during de novo colonization of the nascent peri-implant sulcus

Author information +
History +
PDF

Abstract

Dental implants have restored masticatory function to over 100 000 000 individuals, yet almost 1 000 000 implants fail each year due to peri-implantitis, a disease triggered by peri-implant microbial dysbiosis. Our ability to prevent and treat peri-implantitis is hampered by a paucity of knowledge of how these biomes are acquired and the factors that engender normobiosis. Therefore, we combined a 3-month interventional study of 15 systemically and periodontally healthy adults with whole genome sequencing, fine-scale enumeration and graph theoretics to interrogate colonization dynamics in the pristine peri-implant sulcus. We discovered that colonization trajectories of implants differ substantially from adjoining teeth in acquisition of new members and development of functional synergies. Source-tracking algorithms revealed that this niche is initially seeded by bacteria trapped within the coverscrew chamber during implant placement. These pioneer species stably colonize the microbiome and exert a sustained influence on the ecosystem by serving as anchors of influential hubs and by providing functions that enable cell replication and biofilm maturation. Unlike the periodontal microbiome, recruitment of new members to the peri-implant community occurs on nepotistic principles. Maturation is accompanied by a progressive increase in anaerobiosis, however, the predominant functionalities are oxygen-dependent over the 12-weeks. The peri-implant community is easily perturbed following crown placement, but demonstrates remarkable resilience; returning to pre-perturbation states within three weeks. This study highlights important differences in the development of the periodontal and peri-implant ecosystems, and signposts the importance of placing implants in periodontally healthy individuals or following the successful resolution of periodontal disease.

Cite this article

Download citation ▾
Tamires Pereira Dutra, Nicolas Robitaille, Khaled Altabtbaei, Shareef M. Dabdoub, Purnima S. Kumar. Community dynamics during de novo colonization of the nascent peri-implant sulcus. International Journal of Oral Science, 2025, 17(1): 37 DOI:10.1038/s41368-025-00367-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NIDCR. Tooth Loss Among Adults 20−64. http://www.nidcr.nih.gov/DataStatistics/FindDataByTopic/ToothLoss/ToothLossAdults20to64.htm (2014).

[2]

Emami, E., De Souza, R. F., Kabawat M. & Feine J. S. The impact of edentulism on oral and general health. Int. J. Dentistry. 2013, 1−7 (2013).

[3]

Jain, N., Dutt, U., Radenkov, I. & Jain S. WHO’s global oral health status report 2022: Actions, discussion and implementation. Oral Dis. 30, 73–79 (2023).

[4]

BrånemarkPI. Osseointegration and its experimental background. J. Prosthet. Dent., 1983, 50: 399-410.

[5]

BeckerW, BeckerBE, NewmanMG, NymanS. Clinical and microbiologic findings that may contribute to dental implant failure. Int J. Oral. Maxillofac. Implants, 1990, 5: 31-38

[6]

DreyerH, et al. . Epidemiology and risk factors of peri-implantitis: A systematic review. J. Periodontal Res., 2018, 53: 657-681.

[7]

EspositoM, GrusovinMG, WorthingtonHV. Interventions for replacing missing teeth: treatment of peri-implantitis. Cochrane Database Syst. Rev., 2012, 1: CD004970

[8]

BerglundhT, et al. . Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol., 2018, 45: S286-S291.

[9]

RomandiniM, et al. . Prevalence and risk/protective indicators of peri-implant diseases: A university-representative cross-sectional study. Clin. Oral. Implants Res., 2021, 32: 112-122.

[10]

Belibasakis, G. N. & Manoil, D. Microbial community-driven etiopathogenesis of peri-implantitis. J. Dental Res. 100, 21–28 (2021).

[11]

GanesanSM, et al. . Biome-microbiome interactions in peri-implantitis: A pilot investigation. J. Periodontol., 2022, 93: 814-823.

[12]

Dabdoub, S. M., Tsigarida, A. A. & Kumar P. S. Patient-specific analysis of periodontal and peri-implant microbiomes. J. Dent. Res.92, 168S–75S (2013).

[13]

Sinjab, K. et al. Impact of surface characteristics on the peri-implant microbiome in health and disease. J. Periodontol.95, 244−255 (2024).

[14]

QuirynenM, et al. . Dynamics of initial subgingival colonization of ‘pristine’ peri-implant pockets. Clin. Oral. Implants Res., 2006, 17: 25-37.

[15]

Quirynen, M. et al. Initial subgingival colonization of ‘pristine’ pockets. 2005.

[16]

Payne, J. B. et al. Subgingival microbiome colonization and cytokine production during early dental implant healing. mSphere. 2, e00527−17 (2017).

[17]

Van WinkelhoffAJ, GoenéRJ, BenschopC, FolmerT. Early colonization of dental implants by putative periodontal pathogens in partially edentulous patients. Clin. Oral. Implants Res., 2000, 11: 511-520.

[18]

de FreitasAR, et al. . Oral bacterial colonization on dental implants restored with titanium or zirconia abutments: 6-month follow-up. Clin. Oral. Investig., 2018, 22: 2335-2343.

[19]

FürstMM, SalviGE, LangNP, PerssonGR. Bacterial colonization immediately after installation on oral titanium implants. Clin. Oral. Implants Res., 2007, 18: 501-508.

[20]

Silva-Boghossian, C. M., Duarte, P. T., Silva DG, da, Lourenço, T. G. B. & Colombo, A. P. V. Colonization dynamics of subgingival microbiota in recently installed dental implants compared to healthy teeth in the same individual: a 6-month prospective observational study. J. Appl. Oral Sci. 31, 1−10 (2023).

[21]

Avila, M., Ojcius, D. M. & Zlem, Y. Ö. The oral microbiota: living with a permanent guest. DNA Cell Biol. 28, 405–411 (2009).

[22]

De Wit, R. & Bouvier, T. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ. Microbiol. 8, 755–758 (2006).

[23]

Holmberg, T. J. BIOL 1213. LibreTexts; Northwestern Connecticut Community College https://bio.libretexts.org/@go/page/79240 (2022). Retrieved from https://bio.libretexts.org/Sandboxes/tholmberg_at_nwcc.edu/BIOL_1213

[24]

Clark, M. A., Douglas, M. & Choi, J. Biology 2e. 2nd edn. Vol. 1. (OpenStax; 2018).

[25]

Sottosanti, K. ‘pioneer species’. In: Encyclopedia Britannica. https://www.britannica.com/science/pioneer-species (2023).

[26]

Darwin, C. On the Origin of Species (Murray, 1859).

[27]

DarcyJL, et al. . A phylogenetic model for the recruitment of species into microbial communities and application to studies of the human microbiome. ISME J., 2020, 14: 1359-1368.

[28]

Sumida, S., Kazuyuki, I., Kishi, M. & Okuda, K. Transmission of periodontal disease-associated bacteria from teeth to osseointegrated implant Regions. 17, 696–702 (2002).

[29]

VerdúM, Gómez-AparicioL, Valiente-BanuetA. Phylogenetic relatedness as a tool in restoration ecology: A meta-analysis. Proc. R. Soc. B: Biol. Sci., 2012, 279: 1761-1767.

[30]

Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist. 111, 1119−1144 (1977).

[31]

CastilloJP, VerdúM, Valiente-BanuetA. Neighborhood phylodiversity affects plant performance. Ecology, 2010, 91: 3656-3663.

[32]

WelchJLM, RossettiBJ, RiekenCW, DewhirstFE, BorisyGG. Biogeography of a human oral microbiome at the micron scale. Proc. Natl Acad. Sci. USA., 2016, 113: E791-E800

[33]

WelchJLM, HasegawaY, McNultyNP, GordonJI, BorisyGG. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc. Natl Acad. Sci. USA., 2017, 114: E9105-E9114

[34]

KumarPS, MasonMR, BrookerMR, O’BrienK. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J. Clin. Periodontol., 2012, 39: 425-433.

[35]

MatthewsCR, JoshiV, de JagerM, AspirasM, KumarPS. Host-bacterial interactions during induction and resolution of experimental gingivitis in current smokers. J. Periodontol., 2013, 84: 32-40.

[36]

JoshiV, et al. . Smoking decreases structural and functional resilience in the subgingival ecosystem. J. Clin. Periodontol., 2014, 41: 1037-1047.

[37]

Duran-Pinedo, A. et al. Long-term dynamics of the human oral microbiome during clinical disease progression. BMC Biol. 19, 2−17 (2021).

[38]

LoeH, SilnessJ. Periodontal disease in pregnancy.I. Prevalence and severity. Acta Odontol. Scand., 1963, 21: 533-551.

[39]

SilnessJ, LoeH. Periodontal disease in pregnancy. II. Correlation between oral hygiene and periodontal condition. Acta Odontol. Scand., 1964, 22: 121-135.

[40]

LangmeadB, SalzbergSL. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 2012, 9: 357-359.

[41]

Escapa, I. F. et al. New Insights into Human Nostril Microbiome from the Expanded Human Oral Microbiome Database (eHOMD): a Resource for the Microbiome of the Human Aerodigestive Tract. mSystems. 3, 1−20 (2018).

[42]

BuchfinkB, XieC, HusonDH. Fast and sensitive protein alignment using DIAMOND. Nat. Methods, 2015, 12: 59-60.

[43]

KanehisaM. Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28: 27-30.

[44]

HusonDH, AuchAF, QiJ, SchusterSC. MEGAN analysis of metagenomic data. Genome Res., 2007, 17: 377-386.

[45]

Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

[46]

Dabdoub, S. M. et al. PhyloToAST: Bioinformatics tools for species-level analysis and visualization of complex microbial datasets. Sci. Rep. 6, 1−9 (2016).

[47]

SpellerbergIF, FedorPJ. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr., 2003, 12: 177-179.

[48]

Han, R., Shi, P. & Zhang, A. R. Guaranteed functional tensor singular value decomposition. J. Am. Stat. Assoc.119, 995–1007 (2023).

[49]

Shi, P., Martino, C., Han, R. et al. TEMPTED: time-informed dimensionality reduction for longitudinal microbiome studies. Genome. Biol. 25, 317 (2024).

[50]

McGhee, J. J. et al. Meta-SourceTracker: Application of Bayesian source tracking to shotgun metagenomics. PeerJ. 8, 2−18 (2020).

[51]

ShafferM, ThurimellaK, SterrettJD, LozuponeCA. SCNIC: Sparse correlation network investigation for compositional data. Mol. Ecol. Resour., 2023, 23: 312-325.

[52]

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. In Proc. International AAAI Conference on Web and Social Media, 3(1), 361−362. https://doi.org/10.1609/icwsm.v3i1.13937.

[53]

Xia, L. C. et al. Extended local similarity analysis (eLSA) of microbial community and other time series data with replicates. BMC Syst. Biol. 5, 1−12 (2011).

[54]

DarziY, LetunicI, BorkP, YamadaT. iPath3.0: interactive pathways explorer v3. Nucleic Acids Res., 2018, 46: W510-W513.

Funding

U.S. Department of Health & Human Services | NIH | National Institute of Dental and Craniofacial Research (NIDCR)(R56DE033913)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/