Integrative single-cell and bulk transcriptomes analyses reveals heterogeneity of serine-glycine-one-carbon metabolism with distinct prognoses and therapeutic vulnerabilities in HNSCC

Lixuan Wang1,2,3, Rongchun Yang1,2,3, Yue Kong1,2,3, Jing Zhou1,2,3, Yingyao Chen1,2,3, Rui Li4, Chuwen Chen1,2,3, Xinran Tang4, Xiaobing Chen1,2,3, Juan Xia1,2,3, Xijuan Chen1,2,3, Bin Cheng1,2,3, Xianyue Ren1,2,3

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 44. DOI: 10.1038/s41368-024-00310-2
ARTICLE

Integrative single-cell and bulk transcriptomes analyses reveals heterogeneity of serine-glycine-one-carbon metabolism with distinct prognoses and therapeutic vulnerabilities in HNSCC

  • Lixuan Wang1,2,3, Rongchun Yang1,2,3, Yue Kong1,2,3, Jing Zhou1,2,3, Yingyao Chen1,2,3, Rui Li4, Chuwen Chen1,2,3, Xinran Tang4, Xiaobing Chen1,2,3, Juan Xia1,2,3, Xijuan Chen1,2,3, Bin Cheng1,2,3, Xianyue Ren1,2,3
Author information +
History +

Abstract

Metabolic heterogeneity plays a central role in sustaining uncontrolled cancer cell proliferation and shaping the tumor microenvironment (TME), which significantly compromises the clinical outcomes and responses to therapy in head and neck squamous cell carcinoma (HNSCC) patients. This highlights the urgent need to delineate the intrinsic heterogeneity and biological roles of metabolic vulnerabilities to advance precision oncology. The metabolic heterogeneity of malignant cells was identified using single-cell RNA sequencing (scRNA-seq) profiles and validated through bulk transcriptomes. Serine-glycine-one-carbon (SGOC) metabolism was screened out to be responsible for the aggressive malignant properties and poor prognosis in HNSCC patients. A 4-SGOC gene prognostic signature, constructed by LASSO-COX regression analysis, demonstrated good predictive performance for overall survival and therapeutic responses. Patients in the low-risk group exhibited greater infiltration of exhausted CD8+ T cells, and demonstrated better clinical outcomes after receiving immunotherapy and chemotherapy. Conversely, high-risk patients exhibited characteristics of cold tumors, with enhanced IMPDH1-mediated purine biosynthesis, resulting in poor responses to current therapies. IMPDH1 emerged as a potential therapeutic metabolic target. Treatment with IMPDH inhibitors effectively suppressed HNSCC cell proliferation and metastasis and induced apoptosis in vitro and in vivo by triggering GTP-exhaustion nucleolar stress. Our findings underscore the metabolic vulnerabilities of HNSCC in facilitating accurate patient stratification and individualized precise metabolic-targeted treatment.

Cite this article

Download citation ▾
Lixuan Wang, Rongchun Yang, Yue Kong, Jing Zhou, Yingyao Chen, Rui Li, Chuwen Chen, Xinran Tang, Xiaobing Chen, Juan Xia, Xijuan Chen, Bin Cheng, …Xianyue Ren. Integrative single-cell and bulk transcriptomes analyses reveals heterogeneity of serine-glycine-one-carbon metabolism with distinct prognoses and therapeutic vulnerabilities in HNSCC. International Journal of Oral Science, 2024, 16(0): 44 https://doi.org/10.1038/s41368-024-00310-2

References

1. Hanahan D.Hallmarks of cancer: new dimensions.Cancer Discov. 12, 31-46 (2022).
2. Gaude E.& Frezza, C. Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival.Nat. Commun. 7, 13041(2016).
3. Sun, W.et al.Targeting serine-glycine-one-carbon metabolism as a vulnerability in cancers.Biomark. Res. 11, 48(2023).
4. Reina-Campos, M. et al. Increased serine and one-carbon pathway metabolism by PKClambda/iota deficiency promotes neuroendocrine prostate cancer.Cancer Cell 35, 385-400 (2019).
5. Xia, Y.et al.Metabolic reprogramming by MYCN confers dependence on the serine-glycine-one-carbon biosynthetic pathway.Cancer Res. 79, 3837-3850 (2019).
6. Tiku V.& Antebi, A. Nucleolar function in lifespan regulation.Trends Cell Biol. 28, 662-672 (2018).
7. Mullen N. J.& Singh, P. K. Nucleotide metabolism: a pan-cancer metabolic dependency.Nat. Rev. Cancer 23, 275-294 (2023).
8. Buey R. M.,Fernández‐Justel, D., Jiménez, A. & Revuelta, J. L. The gateway to guanine nucleotides: allosteric regulation of IMP dehydrogenases.Protein Sci. 31, e4399(2022).
9. Sung, H.et al.Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.CA: A Cancer J. Clin. 71, 209-249 (2021).
10. Bray, F.et al.Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA: A Cancer J. Clin. 68, 394-424 (2018).
11. Shield, K. D.et al.The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012.CA: A Cancer J. Clin. 67, 51-64 (2017).
12. Chen, X.et al.Carboxylesterase 2 induces mitochondrial dysfunction via disrupting lipid homeostasis in oral squamous cell carcinoma.Mol. Metab. 65, 101600(2022).
13. Rosario, S. R.et al.Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas.Nat. Commun. 9, 5330(2018).
14. Kofuji, S.et al.IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma.Nat. Cell Biol. 21, 1003-1014 (2019).
15. Shireman, J. M.et al.De novo purine biosynthesis is a major driver of chemoresistance in glioblastoma.Brain 144, 1230-1246 (2021).
16. Plana-Bonamaisó, A. et al. Post-translational regulation of retinal IMPDH1 in vivo to adjust GTP synthesis to illumination conditions.eLife 9, e56418(2020).
17. Johnson M. C.& Kollman, J. M. Cryo-EM structures demonstrate human IMPDH2 filament assembly tunes allosteric regulation.eLife 9, e53243(2020).
18. Lindstrom, M. S., Bartek, J.& Maya-Mendoza, A. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways.Cell Death Differ. 29, 972-982 (2022).
19. Lafita-Navarro, M. C. & Conacci-Sorrell, M. Nucleolar stress: from development to cancer.Semin. Cell Dev. Biol. 136, 64-74 (2023).
20. Huang, Y.et al.Characterizing cancer metabolism from bulk and single-cell RNA-seq data using METAFlux.Nat. Commun. 14, 4883(2023).
21. Xiao, Y.et al.Emerging therapies in cancer metabolism.Cell Metab. 35, 1283-1303 (2023).
22. Finley L. W.S. What is cancer metabolism?Cell 186, 1670-1688 (2023).
23. Tang, M.et al.CPT1A-mediated fatty acid oxidation promotes cell proliferation via nucleoside metabolism in nasopharyngeal carcinoma.Cell Death Dis. 13, 331(2022).
24. Guan, J.et al.Cellular hierarchy framework based on single-cell/multi-patient sample sequencing reveals metabolic biomarker PYGL as a therapeutic target for HNSCC.J. Exp. Clin. Cancer Res. 42, 162(2023).
25. Karigane, D.et al.p38α activates purine metabolism to initiate hematopoietic stem/progenitor cell cycling in response to stress.Cell Stem Cell 19, 192-204 (2016).
26. Huang, F.et al.Guanosine triphosphate links MYC-dependent metabolic and ribosome programs in small-cell lung cancer.J. Clin. Investig. 131, e139929(2021).
27. Bianchi-Smiraglia, A. et al. Regulation of local GTP availability controls RAC1 activity and cell invasion.Nat. Commun. 12, 6091(2021).
28. Li, K.et al.ILF3 is a substrate of SPOP for regulating serine biosynthesis in colorectal cancer.Cell Res. 30, 163-178 (2019).
29. Liu, M.et al.Transcriptional profiling reveals a common metabolic program in high-risk human neuroblastoma and mouse neuroblastoma sphere-forming cells.Cell Rep. 17, 609-623 (2016).
30. Ross, K. C.et al.Identification of the serine biosynthesis pathway as a critical component of BRAF inhibitor resistance of melanoma, pancreatic, and non-small cell lung cancer cells.Mol. Cancer Ther. 16, 1596-1609 (2017).
31. Zuo, L.et al.Integrative analysis of metabolomics and transcriptomics data identifies prognostic biomarkers associated with oral squamous cell carcinoma.Front. Oncol. 11, 750794(2021).
32. Gurioli, G.et al.Circulating tumor cell gene expression and plasma AR gene copy number as biomarkers for castration-resistant prostate cancer patients treated with cabazitaxel.BMC Med. 20, 48(2022).
33. Li, C.et al.Identify metabolism-related genes IDO1, ALDH2, NCOA2, SLC7A5, SLC3A2, LDHB, and HPRT1 as potential prognostic markers and correlate with immune infiltrates in head and neck squamous cell carcinoma.Front. Immunol. 13, 955614(2022).
34. Cheriyamundath, S.et al.The Collagen-Modifying Enzyme PLOD2 Is Induced and Required during L1-Mediated Colon Cancer Progression.Int. J. Mol. Sci. 22, 3552(2021).
35. Kiyozumi, Y.et al.PLOD2 as a potential regulator of peritoneal dissemination in gastric cancer.Int. J. Cancer 143, 1202-1211 (2018).
36. Eisinger-Mathason, T. S. et al. Hypoxia-dependent modification of collagen networks promotes sarcoma metastasis.Cancer Discov. 3, 1190-1205 (2013).
37. Mattie, M.et al.The discovery and preclinical development of ASG-5ME, an antibody-drug conjugate targeting SLC44A4-Positive epithelial tumors including pancreatic and prostate cancer.Mol. Cancer Ther. 15, 2679-2687 (2016).
38. Carozza, J. A.et al.Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity.Nat. Cancer 1, 184-196 (2020).
39. Kepp O., Loos F., Liu P.& Kroemer, G. Extracellular nucleosides and nucleotides as immunomodulators.Immunol. Rev. 280, 83-92 (2017).
40. Cekic C.& Linden, J. Purinergic regulation of the immune system.Nat. Rev. Immunol. 16, 177-192 (2016).
41. Reina-Campos, M., Diaz-Meco, M. T. & Moscat, J. The complexity of the serine glycine one-carbon pathway in cancer.J. Cell Biol. 219, e201907022(2020).
42. Huang, F.et al. Inosine monophosphate dehydrogenase dependence in a subset of small cell lung cancers. Cell Metab. 28, 369-82.e5 (2018).
43. Choi, J.-H.et al.Single-cell transcriptome profiling of the stepwise progression of head and neck cancer.Nat. Commun. 14, 1055(2023).
44. Diehl F. F., Lewis C. A., Fiske B. P.& Vander Heiden, M. G. Cellular redox state constrains serine synthesis and nucleotide production to impact cell proliferation.Nat. Metab. 1, 861-867 (2019).
45. Parker S. J.& Metallo, C. M. Chasing one-carbon units to understand the role of serine in epigenetics.Mol. Cell 61, 185-186 (2016).
46. Sanderson S. M., Gao X., Dai Z.& Locasale, J. W. Methionine metabolism in health and cancer: a nexus of diet and precision medicine.Nat. Rev. Cancer 19, 625-637 (2019).
47. Wang, X.et al.Bulk tissue cell type deconvolution with multi-subject single-cell expression reference.Nat. Commun. 10, 380(2019).
48. Aran, D., Hu, Z.& Butte, A. J. xCell: digitally portraying the tissue cellular heterogeneity landscape.Genome Biol. 18, 220(2017).
49. Zhang, Y.et al.CellCall: integrating paired ligand-receptor and transcription factor activities for cell-cell communication.Nucleic Acids Res. 49, 8520-8534 (2021).
50. Chen, W.et al.TIPE3 represses head and neck squamous cell carcinoma progression via triggering PGAM5 mediated mitochondria dysfunction.Cell Death Dis. 14, 251(2023).
51. Wang, Y.et al.SPDEF suppresses head and neck squamous cell carcinoma progression by transcriptionally activating NR4A1.Int. J. Oral Sci. 13, 33(2021).
PDF

Accesses

Citations

Detail

Sections
Recommended

/