Sinensetin protects against periodontitis through binding to Bach1 enhancing its ubiquitination degradation and improving oxidative stress

Zhiyao Yuan, Junjie Li, Fuyu Xiao, Yu Wu, Zhiting Zhang, Jiahong Shi, Jun Qian, Xudong Wu, Fuhua Yan

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 38. DOI: 10.1038/s41368-024-00305-z
ARTICLE

Sinensetin protects against periodontitis through binding to Bach1 enhancing its ubiquitination degradation and improving oxidative stress

  • Zhiyao Yuan, Junjie Li, Fuyu Xiao, Yu Wu, Zhiting Zhang, Jiahong Shi, Jun Qian, Xudong Wu, Fuhua Yan
Author information +
History +

Abstract

Periodontitis is a chronic inflammatory and immune reactive disease induced by the subgingival biofilm. The therapeutic effect for susceptible patients is often unsatisfactory due to excessive inflammatory response and oxidative stress. Sinensetin (Sin) is a nature polymethoxylated flavonoid with anti-inflammatory and antioxidant activities. Our study aimed to explore the beneficial effect of Sin on periodontitis and the specific molecular mechanisms. We found that Sin attenuated oxidative stress and inflammatory levels of periodontal ligament cells (PDLCs) under inflammatory conditions. Administered Sin to rats with ligation-induced periodontitis models exhibited a protective effect against periodontitis in vivo. By molecular docking, we identified Bach1 as a strong binding target of Sin, and this binding was further verified by cellular thermal displacement assay and immunofluorescence assays. Chromatin immunoprecipitation-quantitative polymerase chain reaction results also revealed that Sin obstructed the binding of Bach1 to the HMOX1 promoter, subsequently upregulating the expression of the key antioxidant factor HO-1. Further functional experiments with Bach1 knocked down and overexpressed verified Bach1 as a key target for Sin to exert its antioxidant effects. Additionally, we demonstrated that Sin prompted the reduction of Bach1 by potentiating the ubiquitination degradation of Bach1, thereby inducing HO-1 expression and inhibiting oxidative stress. Overall, Sin could be a promising drug candidate for the treatment of periodontitis by targeting binding to Bach1.

Cite this article

Download citation ▾
Zhiyao Yuan, Junjie Li, Fuyu Xiao, Yu Wu, Zhiting Zhang, Jiahong Shi, Jun Qian, Xudong Wu, …Fuhua Yan. Sinensetin protects against periodontitis through binding to Bach1 enhancing its ubiquitination degradation and improving oxidative stress. International Journal of Oral Science, 2024, 16(0): 38 https://doi.org/10.1038/s41368-024-00305-z

References

1. Kinane, D. F., Stathopoulou, P. G.& Papapanou, P. N. Periodontal diseases.Nat. Rev. Dis. Prim. 3, 17038(2017).
2. Nibali L., Farias B. C., Vajgel A., Tu Y. K.& Donos, N. Tooth loss in aggressive periodontitis: a systematic review.J. Dent. Res. 92, 868-875 (2013).
3. Grant W. B., van Amerongen, B. M. & Boucher, B. J. Periodontal disease and other adverse health outcomes share risk factors, including dietary factors and vitamin D status.Nutrients 15, 2787(2023).
4. Kapila Y. L.Oral health’s inextricable connection to systemic health: Special populations bring to bear multimodal relationships and factors connecting periodontal disease to systemic diseases and conditions.Periodontology 2000 87, 11-16 (2021).
5. Aboodi, G. M., Goldberg, M. B.& Glogauer, M. Refractory periodontitis population characterized by a hyperactive oral neutrophil phenotype.J. Periodontol. 82, 726-733 (2011).
6. Hienz, S. A., Paliwal, S.& Ivanovski, S. Mechanisms of bone resorption in periodontitis.J. Immunol. Res 2015, 615486(2015).
7. Kanzaki, H.et al.RANKL induces Bach1 nuclear import and attenuates Nrf2-mediated antioxidant enzymes, thereby augmenting intracellular reactive oxygen species signaling and osteoclastogenesis in mice.FASEB J. 31, 781-792 (2017).
8. Chopra, A.et al.BACH1 binding links the genetic risk for severe periodontitis with ST8SIA1.J. Dent. Res. 101, 93-101 (2022).
9. Caffesse R. G.& Echeverría, J. J. Treatment trends in periodontics.Periodontology 2000 79, 7-14 (2019).
10. Salvi G. E.& Lang, N. P. Host response modulation in the management of periodontal diseases.J. Clin. Periodontol. 32 108-129 (2005).
11. Teughels, W.et al.Adjunctive effect of systemic antimicrobials in periodontitis therapy: a systematic review and meta-analysis.J. Clin. Periodontol. 47(Suppl 22), 257-281 (2020).
12. Bhattarai G., Poudel S. B., Kook S. H.& Lee, J. C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis.Acta Biomater. 29, 398-408 (2016).
13. Kang, S.-I., Shin, H.-S.& Kim, S.-J. Sinensetin enhances adipogenesis and lipolysis by increasing cyclic adenosine monophosphate levels in 3T3-L1 adipocytes.Biol. Pharm. Bull. 38, 552-558 (2015).
14. Han Jie, L., Jantan, I., Yusoff, S. D., Jalil, J. & Husain, K. Sinensetin: an insight on its pharmacological activities, mechanisms of action and toxicity.Front. Pharmacol. 11, 553404(2021).
15. Adham, A. N.et al.Transcriptomics, molecular docking, and cross-resistance profiling of nobiletin in cancer cells and synergistic interaction with doxorubicin upon SOX5 transfection.Phytomedicine 100, 154064(2022).
16. Zhang, M.et al.Dietary sinensetin and polymethoxyflavonoids: bioavailability and potential metabolic syndrome-related bioactivity. Crit. Rev. Food Sci. Nutr. 1-17, https://doi.org/10.1080/10408398.2023.2219758(2023).
17. Zhang B. Y., Zheng Y. F., Zhao J., Kang D., Wang Z.& Xu, L. J. Identification of multi-target anti-cancer agents from TCM formula by in silico prediction and in vitro validation.Chin. J. Nat. Med. 20, 332-351 (2022).
18. Shin H. S., Kang S. I., Yoon S. A., Ko H. C.& Kim, S. J. Sinensetin attenuates LPS-induced inflammation by regulating the protein level of IκB-α.Biosci. Biotechnol. Biochem. 76, 847-849 (2012).
19. Yao, X.et al.Determination of synergistic effects of polymethoxylated flavone extracts of Jinchen orange peels (Citrus Sinensis Osberk) with amino acids and organic acids using chemiluminescence.Eur. Food Res. Technol. 229, 743-750 (2009).
20. Lam, I. K.et al.In vitro and in vivo structure and activity relationship analysis of polymethoxylated flavonoids: identifying sinensetin as a novel antiangiogenesis agent.Mol. Nutr. Food Res. 56, 945-956 (2012).
21. Lignitto, L.et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell 178, 316-329.e318 (2019).
22. Jia, M.et al.Deletion of BACH1 attenuates atherosclerosis by reducing endothelial inflammation.Circ. Res. 130, 1038-1055 (2022).
23. Wiel, C.et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330-345.e322 (2019).
24. Chen, R. H., Chen, Y. H.& Huang, T. Y. Ubiquitin-mediated regulation of autophagy.J. Biomed. Sci. 26, 80(2019).
25. Kaushik, S.et al.Autophagy and the hallmarks of aging.Ageing Res. Rev. 72, 101468(2021).
26. Zhao L., Zhao J., Zhong K., Tong A.& Jia, D. Targeted protein degradation: mechanisms, strategies and application.Signal Transduct. Target. Ther. 7, 113(2022).
27. Hanna J.,Guerra-Moreno, A., Ang, J. & Micoogullari, Y. Protein degradation and the pathologic basis of disease.Am. J. Pathol. 189, 94-103 (2019).
28. Li, Y.et al.Resveratrol alleviates diabetic periodontitis-induced alveolar osteocyte ferroptosis possibly via regulation of SLC7A11/GPX4.Nutrients 15, 2115(2023).
29. Pimentel, S. P.et al.Impact of natural curcumin on the progression of experimental periodontitis in diabetic rats.J. Periodontal Res. 55, 41-50 (2020).
30. Toker H.,Balci Yuce, H., Lektemur Alpan, A., Gevrek, F. & Elmastas, M. Morphometric and histopathological evaluation of the effect of grape seed proanthocyanidin on alveolar bone loss in experimental diabetes and periodontitis.J. Periodontal Res. 53, 478-486 (2018).
31. Napimoga, M. H.et al.Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model.J. Nat. Products 76, 2316-2321 (2013).
32. Fernández-Rojas, B. & Gutiérrez-Venegas, G. Flavonoids exert multiple periodontic benefits including anti-inflammatory, periodontal ligament-supporting, and alveolar bone-preserving effects.Life Sci. 209, 435-454 (2018).
33. Hayes J. D.,Dinkova-Kostova, A. T. & Tew, K. D. Oxidative stress in cancer.Cancer Cell 38, 167-197 (2020).
34. Sato, M.et al.BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition.Cancer Res. 80, 1279-1292 (2020).
35. Shabbir, U.et al.Curcumin, quercetin, catechins and metabolic diseases: the role of gut microbiota.Nutrients 13, 206(2021).
36. Peng, Q.et al.Polymethoxyflavones from citrus peel: advances in extraction methods, biological properties, and potential applications. Crit. Rev. Food Sci. Nutr. 1-13, https://doi.org/10.1080/10408398.2022.2156476(2022).
37. Casares, L.et al.Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1.Redox Biol. 28, 101321(2020).
38. Wada, S.et al.Bach1 inhibition suppresses osteoclastogenesis via reduction of the signaling via reactive oxygen species by reinforced antioxidation.Front. Cell Dev. Biol. 8, 740(2020).
39. Yuan, Z.et al.Knockdown of Bach1 protects periodontal bone regeneration from inflammatory damage.J. Cell. Mol. Med. 27, 3465-3477 (2023).
40. Zou X., Liu C., Wu X., Yuan Z.& Yan, F. Changes in N6-methyladenosine RNA methylomes of human periodontal ligament cells in response to inflammatory conditions.J. Periodontal Res. 58, 444-455 (2023).
41. Hong M., Xiao K., Lin P.& Lin, J. Five Rutaceae family ethanol extracts alleviate H2O2 and LPS-induced inflammation via NF-κB and JAK-STAT3 pathway in HaCaT cells.Chin. J. Nat. Med. 20, 937-947 (2022).
PDF

Accesses

Citations

Detail

Sections
Recommended

/