PDF
METTL7A-mediated m6A modification of corin reverses bisphosphonates-impaired osteogenic differentiation of orofacial BMSCs
- Yizhou Jin1, Xiao Han1, Yuejun Wang1, Zhipeng Fan1,2,3
Author information
+
1. Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China;
2. Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China;
3. Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, China
Show less
History
+
Received |
Revised |
Published |
20 Oct 2023 |
06 Mar 2024 |
01 Jan 2024 |
Issue Date |
|
10 Jul 2024 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Ruggiero, S. L.et al.American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw-2014 update.J. Oral Maxillofac Surg. 72, 1938-1956 (2014).
2. Mucke, T.et al.Outcome of treatment and parameters influencing recurrence in patients with bisphosphonate-related osteonecrosis of the jaws.J. Cancer Res. Clin. Oncol. 137, 907-913 (2011).
3. Fliefel R., Troltzsch M., Kuhnisch J., Ehrenfeld M.& Otto, S. Treatment strategies and outcomes of bisphosphonate-related osteonecrosis of the jaw (BRONJ) with characterization of patients: a systematic review.Int. J. Oral Maxillofac Surg. 44, 568-585 (2015).
4. Crane J. L.& Cao, X. Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling.J. Clin. Invest. 124, 466-472 (2014).
5. Gallagher J. C.& Sai, A. J. Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis.Maturitas 65, 301-307 (2010).
6. Marx R. E., Sawatari Y., Fortin M.& Broumand, V. Bisphosphonate-induced exposed bone (osteonecrosis/osteopetrosis) of the jaws: risk factors, recognition, prevention, and treatment.J. Oral Maxillofac Surg. 63, 1567-1575 (2005).
7. He, L. H.et al.Role of bone marrow stromal cells in impaired bone repair from BRONJ Osseous Lesions.J. Dental Res. 96, 539-546 (2017).
8. Hu, L.et al.Apoptosis repressor with caspase recruitment domain enhances survival and promotes osteogenic differentiation of human osteoblast cells under Zoledronate treatment.Mol. Med. Rep. 14, 3535-3542 (2016).
9. Yan W., Sheng N., Seto M., Morser J.& Wu, Q. Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart.J. Biol. Chem. 274, 14926-14935 (1999).
10. Yan W., Wu F., Morser J.& Wu, Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme.Proc. Natl Acad. Sci. USA 97, 8525-8529 (2000).
11. Nordberg R. C., Wang H., Wu Q.& Loboa, E. G. Corin is a key regulator of endochondral ossification and bone development via modulation of vascular endothelial growth factor A expression.J. Tissue Eng. Regen Med. 12, 2277-2286 (2018).
12. Charoenpanich, A.et al.Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors.Tissue Eng Part A 17, 2615-2627 (2011).
13. Zhou H., Zhu J., Liu M., Wu Q.& Dong, N. Role of the protease corin in chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells.J. Tissue Eng. Regen Med. 12, 973-982 (2018).
14. Jiang, J.et al.Ectodomain shedding and autocleavage of the cardiac membrane protease corin.J. Biol. Chem. 286, 10066-10072 (2011).
15. Dong, N.et al.Plasma soluble corin in patients with heart failure.Circ. Heart Fail 3, 207-211 (2010).
16. Zhou, H.et al.Reduced serum corin levels in patients with osteoporosis.Clin. Chim. Acta 426, 152-156 (2013).
17. Alderman M. H.3rd & Xiao, A. Z. N(6)-Methyladenine in eukaryotes.Cell Mol. Life Sci. 76, 2957-2966 (2019).
18. Xie, L.et al.Emerging roles for DNA 6mA and RNA m6A methylation in mammalian genome.Int. J. Mol. Sci. 24, 13897(2023).
19. Chen, L. S.et al.The m(6)A demethylase FTO promotes the osteogenesis of mesenchymal stem cells by downregulating PPARG.Acta Pharmacol. Sin. 43, 1311-1323 (2022).
20. Han, X.et al.METTL3 promotes osteo/odontogenic differentiation of stem cells by inhibiting miR-196b-5p maturation.Stem Cells Int. 2023, 8992284(2023).
21. Cheng, C.et al.METTL14 benefits the mesenchymal stem cells in patients with steroid-associated osteonecrosis of the femoral head by regulating the m6A level of PTPN6.Aging 13, 23903-25919 (2021).
22. Vera-Montecinos, A. et al. A novel localization of METTL7A in Bergmann Glial cells in human cerebellum.Int. J. Mol. Sci. 24, 8405(2023).
23. Lee E., Kim J. Y., Kim T. K., Park S. Y.& Im, G. I. Methyltransferase-like protein 7A (METTL7A) promotes cell survival and osteogenic differentiation under metabolic stress.Cell Death Discov. 7, 154(2021).
24. Wang N., Han X., Yang H., Xia D.& Fan, Z. miR-6807-5p inhibited the odontogenic differentiation of human dental pulp stem cells through directly targeting METTL7A.Front. Cell Dev. Biol. 9, 759192(2021).
25. Yi, X.et al.Candidate genes responsible for lipid droplets formation during adipogenesis simultaneously affect osteoblastogenesis.Histochem. Cytochem. 60, 89-100 (2022).
26. Wu, Y.et al.Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis.Nat. Commun. 9, 4772(2018).
27. Yang H., Liang Y., Cao Y., Cao Y.& Fan, Z. Homeobox C8 inhibited the osteo-/dentinogenic differentiation and migration ability of stem cells of the apical papilla via activating KDM1A.J. Cell. Physiol. 235, 8432-8445 (2020).
28. Baron, R., Ferrari, S.& Russell, R. G. Denosumab and bisphosphonates: different mechanisms of action and effects.Bone 48, 677-692 (2011).
29. Miano J. M.Myocardin in biology and disease.J. Biomed. Res. 29, 3-19 (2015).
30. Tuan N. M.& Lee, C. H. Role of Anillin in tumour: from a prognostic biomarker to a novel target.Cancers (Basel) 12, 1600(2020).
31. Black, D. M.et al.Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis.N. Engl. J. Med. 356, 1809-1821 (2007).
32. Dong, X.et al.Adipose-derived stem cells promote bone coupling in bisphosphonate-related osteonecrosis of the jaw by TGF-beta1.Front. Cell Dev. Biol. 9, 639590(2021).
33. Wang B., Zhan Y., Yan L.& Hao, D. How zoledronic acid improves osteoporosis by acting on osteoclasts.Front. Pharmacol. 13, 961941(2022).
34. Cheng, Y. T. et al. Zoledronic acid modulates osteoclast apoptosis through activation of the NF-kappaB signaling pathway in ovariectomized rats. Exp. Biol. Med. (Maywood) 246, 1727-1739 (2021).
35. Ebert, R.et al.Pulse treatment with zoledronic acid causes sustained commitment of bone marrow derived mesenchymal stem cells for osteogenic differentiation.Bone 44, 858-864 (2009).
36. Daubine F.,Le Gall, C., Gasser, J., Green, J. & Clezardin, P. Antitumor effects of clinical dosing regimens of bisphosphonates in experimental breast cancer bone metastasis.J. Natl. Cancer Inst. 99, 322-330 (2007).
37. Wang Z., Cai D., Li K., Ju X.& Nie, Q. Transcriptome analysis of the inhibitory effect of cycloleucine on myogenesis.Poult Sci. 101, 102219(2022).
38. Chen, J. N.et al.Regulation of m6A RNA methylation and its effect on myogenic differentiation in murine myoblasts.Mol. Biol. 53, 384-392 (2019).
39. Song, Y. Y.et al.The role of the ERK signaling pathway in promoting angiogenesis for treating ischemic diseases.Front. Cell Dev. Biol. 11, 1164166(2023).
40. Wang, X.et al.RBM15 facilitates laryngeal squamous cell carcinoma progression by regulating TMBIM6 stability through IGF2BP3 dependent.J. Exp. Clin. Cancer Res. 40, 80(2021).
41. Dominissini D.,Moshitch-Moshkovitz, S., Salmon-Divon, M., Amariglio, N. & Rechavi, G. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing.Nat. Protoc. 8, 176-189 (2013).