PDF
Unveiling the oral-gut connection: chronic apical periodontitis accelerates atherosclerosis via gut microbiota dysbiosis and altered metabolites in apoE-/- Mice on a high-fat diet
- Guowu Gan1,2, Shihan Lin1,2, Yufang Luo1,2, Yu Zeng1,2, Beibei Lu1,2, Ren Zhang1,2, Shuai Chen1,2, Huaxiang Lei1,2, Zhiyu Cai3, Xiaojing Huang1,2
Author information
+
1. Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatology Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China;
2. Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China;
3. Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
Show less
History
+
Received |
Revised |
Published |
11 Sep 2023 |
27 Mar 2024 |
01 Jan 2024 |
Issue Date |
|
10 Jul 2024 |
|
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact
us for subscripton.
References
1. Ricucci D.& Siqueira, J. F. Jr. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings.J. Endod. 36, 1277-1288 (2010).
2. Persoon I. F.& Ozok, A. R. Definitions and epidemiology of endodontic infections.Curr. Oral Health Rep. 4, 278-285 (2017).
3. Sasaki, H.et al.Interrelationship between periapical lesion and systemic metabolic disorders.Curr. Pharm. Design 22, 2204-2215 (2016).
4. Segura-Egea, J. J., Martin-Gonzalez, J. & Castellanos-Cosano, L. Endodontic medicine: connections between apical periodontitis and systemic diseases.Int. Endod. J. 48, 933-951 (2015).
5. Cotti E.& Mercuro, G. Apical periodontitis and cardiovascular diseases: previous findings and ongoing research.Int. Endod. J. 48, 926-932 (2015).
6. Gistera A.& Hansson, G. K. The immunology of atherosclerosis.Nat. Rev. Nephrol. 13, 368-380 (2017).
7. Koren, O.et al.Human oral, gut, and plaque microbiota in patients with atherosclerosis.Proc. Natl Acad. Sci. USA 108, 4592-4598 (2011).
8. Hayashi, C.et al.Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis 215, 52-59 (2011).
9. Ran S., Liu B., Gu S., Sun Z.& Liang, J. Analysis of the expression of NLRP3 and AIM2 in periapical lesions with apical periodontitis and microbial analysis outside the apical segment of teeth.Arch. Oral Biol. 78, 39-47 (2017).
10. Ao, M.et al.Infection withPorphyromonas gingivalis exacerbates endothelial injury in obese mice. PLoS ONE 9, e110519(2014).
11. Xie, H.et al.Oral pathogen aggravates atherosclerosis by inducing smooth muscle cell apoptosis and repressing macrophage efferocytosis.Int. J. Oral Sci. 15, 26(2023).
12. Gan, G.et al.Chronic apical periodontitis exacerbates atherosclerosis in apolipoprotein E-deficient mice and leads to changes in the diversity of gut microbiota.Int. Endod. J. 55, 152-163 (2022).
13. Zierer, J.et al.The fecal metabolome as a functional readout of the gut microbiome.Nat. Genet. 50, 790-795 (2018).
14. Donia M. S.& Fischbach, M. A. Human microbiota. Small molecules from the human microbiota.Science 349, 1254766(2015).
15. Schroeder B. O.& Backhed, F. Signals from the gut microbiota to distant organs in physiology and disease.Nat. Med. 22, 1079-1089 (2016).
16. Miyazaki-Anzai, S., Masuda, M., Levi, M., Keenan, A. L. & Miyazaki, M. Dual activation of the bile acid nuclear receptor FXR and G-protein-coupled receptor TGR5 protects mice against atherosclerosis.PLoS ONE 9, e108270(2014).
17. Vernocchi P.,Del Chierico, F. & Putignani, L. Gut microbiota profiling: metabolomics based approach to unravel compounds affecting human health.Front. Microbiol. 7, 1144(2016).
18. Wishart D. S.Metabolomics for investigating physiological and pathophysiological processes.Physiol. Rev. 99, 1819-1875 (2019).
19. Marcobal, A.et al.A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice.Multidiscip. J. Microb. Ecol. 7, 1933-1943 (2013).
20. Barcena, C.et al.Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice.Nat. Med. 25, 1234-1242 (2019).
21. Jonsson A. L.& Backhed, F. Role of gut microbiota in atherosclerosis.Nat. Rev. Cardiol. 14, 79-87 (2017).
22. Batty, G. D.et al.Oral health and later coronary heart disease: Cohort study of one million people.Eur. J. Prev. Cardiol. 25, 598-605 (2018).
23. Chen, S.et al.Effects of chronic apical periodontitis on the inflammatory response of the aorta in hyperlipemic rats.Clin. Oral Investig. 25, 3845-3852 (2021).
24. Zhang J., Huang X., Lu B., Zhang C.& Cai, Z. Can apical periodontitis affect serum levels of CRP, IL-2, and IL-6 as well as induce pathological changes in remote organs?Clin. Oral Investig. 20, 1617-1624 (2016).
25. Gan, G.et al.Gut microbiota may mediate the impact of chronic apical periodontitis on atherosclerosis in apolipoprotein E-deficient mice.Int. Endod. J. 56, 53-68 (2023).
26. Suh, J. S.et al.Periodontitis-induced systemic inflammation exacerbates atherosclerosis partly via endothelial-mesenchymal transition in mice.Int. J. Oral Sci. 11, 21(2019).
27. Bisanz J. E., Upadhyay V., Turnbaugh J. A., Ly, K. & Turnbaugh, P. J. Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host Microbe 26, 265-272.e264 (2019).
28. Drapkina, O. M.et al. Diversities in the gut microbial patterns in patients with atherosclerotic cardiovascular diseases and certain heart failure phenotypes. Biomedicines 10, https://doi.org/10.3390/biomedicines10112762 (2022).
29. Jie, Z.et al.The gut microbiome in atherosclerotic cardiovascular disease.Nat. Commun. 8, 845(2017).
30. van den Munckhof, I. C. L.et al. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies.Obes. Rev. 19, 1719-1734 (2018).
31. Liu, B.et al.Western diet feeding influences gut microbiota profiles in apoE knockout mice.Lipids Health Disease 17, 159(2018).
32. Koh A.& Backhed, F. From association to causality: the role of the gut microbiota and its functional products on host metabolism.Mol. Cell 78, 584-596 (2020).
33. Zhang S., Hong F., Ma C.& Yang, S. Hepatic lipid metabolism disorder and atherosclerosis.Endocr. Metab. Immune Disord.-Drug Targets 22, 590-600 (2022).
34. Wei, D.et al.Melatonin relieves hepatic lipid dysmetabolism caused by aging via modifying the secondary bile acid pattern of gut microbes.Cell. Mol. Life Sci. 79, 527(2022).
35. Araujo, A. R., Castro, V. I.B., Reis, R. L. & Pires, R. A. Glucosamine and Its analogues as modulators of amyloid-beta toxicity.ACS Med. Chem. 12, 548-554 (2021).
36. Kim, M. S.et al.Phloretin suppresses thrombin-mediated leukocyte-platelet-endothelial interactions.Mol. Nutr. Food Res. 58, 698-708 (2014).
37. Xia, Y.et al.Low-dose phloretin alleviates diabetic atherosclerosis through endothelial KLF2 restoration.Biosci. Biotechnol. Biochem. 84, 815-823 (2020).
38. Li, S.et al.Ketogenic diet aggravates colitis, impairs intestinal barrier and alters gut microbiota and metabolism in DSS-induced mice.Food Funct. 12, 10210-10225 (2021).
39. Wong, W. Y.et al.Lactobacillus casei strain Shirota ameliorates dextran sulfate sodium-induced colitis in mice by increasing taurine-conjugated bile acids and inhibiting NF-kappaB signaling via stabilization of IkappaBalpha. Front. Nutr. 9, 816836(2022).
40. Vajpeyee, A.et al.Metagenomics analysis of thrombus samples retrieved from mechanical thrombectomy.Neurointervention 16, 39-45 (2021).
41. Shastri, M. D.et al.In-vitro suppression of IL-6 and IL-8 release from human pulmonary epithelial cells by non-anticoagulant fraction of enoxaparin.PLoS ONE 10, e0126763(2015).
42. Xu, Y.et al.Farnesoid X receptor activation increases reverse cholesterol transport by modulating bile acid composition and cholesterol absorption in mice.Hepatology 64, 1072-1085 (2016).
43. Su, J.et al.Serum metabolic signatures of subclinical atherosclerosis in patients with type 2 diabetes mellitus: a preliminary study.Acta Diabetol. 58, 1217-1224 (2021).
44. Yang, R.et al.Profiling of bile acids and activated receptor S1PR2 in gingival tissues of periodontitis patients.J. Periodontol. 94, 564-574 (2023).
45. Bansil R.& Turner, B. S. The biology of mucus: composition, synthesis and organization.Adv. Drug Deliv. Rev. 124, 3-15 (2018).
46. Sun S.& Zhou, J. Phase separation as a therapeutic target in tight junction-associated human diseases.Acta Pharmacol. Sin. 41, 1310-1313 (2020).
47. Yong, Y.et al.ERK1/2 mitogen-activated protein kinase mediates downregulation of intestinal tight junction proteins in heat stress-induced IBD model in pig.J. Therm. Biol. 101, 103103(2021).
48. Serreli, G.et al.Altered paracellular permeability in intestinal cell monolayer challenged with lipopolysaccharide: modulatory effects of pterostilbene metabolites.Food Chem. Toxicol. 145, 111729(2020).
49. Rogler G.& Rosano, G. The heart and the gut.Eur. Heart J. 35, 426-430 (2014).
50. Daugherty, A.et al.Recommendation on design, execution, and reporting of animal atherosclerosis studies: a scientific statement from the American Heart Association.Circ. Res. 121, e53-e79 (2017).
51. Centa M., Ketelhuth D. F. J., Malin, S. & Gistera, A. Quantification of Atherosclerosis in Mice. J. Vis. Exp. e59828, https://doi.org/10.3791/59828 (2019).
52. Segata, N.et al.Metagenomic biomarker discovery and explanation.Genome Biol. 12, R60(2011).
53. Vazquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing high-throughput microbial community data.Gigascience 2, 16(2013).
54. Want, E. J.et al.Global metabolic profiling of animal and human tissues via UPLC-MS.Nat. Protocols 8, 17-32 (2013).
55. Chong J.& Xia, J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data.Bioinformatics 34, 4313-4314 (2018).