A 3D In-vitro model of the human dentine interface shows long-range osteoinduction from the dentine surface

William Macalester1,2, Asme Boussahel1, Rafael O. Moreno-Tortolero2,3,5, Mark R. Shannon1, Nicola West4, Darryl Hill1, Adam Perriman1

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 37. DOI: 10.1038/s41368-024-00298-9
ARTICLE

A 3D In-vitro model of the human dentine interface shows long-range osteoinduction from the dentine surface

  • William Macalester1,2, Asme Boussahel1, Rafael O. Moreno-Tortolero2,3,5, Mark R. Shannon1, Nicola West4, Darryl Hill1, Adam Perriman1
Author information +
History +

Abstract

Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects. However, the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering, exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems, which will impact on cell fate and subsequent treatment efficacy. Herein, we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells (hMSCs) encapsulated in a microporous hydrogel bioink. We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs, and that both dentine and β-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface, which is distal to the gel-substrate interface. Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.

Cite this article

Download citation ▾
William Macalester, Asme Boussahel, Rafael O. Moreno-Tortolero, Mark R. Shannon, Nicola West, Darryl Hill, …Adam Perriman. A 3D In-vitro model of the human dentine interface shows long-range osteoinduction from the dentine surface. International Journal of Oral Science, 2024, 16(0): 37 https://doi.org/10.1038/s41368-024-00298-9

References

1. Sheikh, Z.et al.Natural graft tissues and synthetic biomaterials for periodontal and alveolar bone reconstructive applications: a review.Biomater. Res. 21, 1(2017).
2. Schwartz, C. E.et al.Prospective evaluation of chronic pain associated with posterior autologous iliac crest bone graft harvest and its effect on postoperative outcome.Health Qual. Life Outcomes 7, 49(2009).
3. Kasaj A., Röhrig B., Zafiropoulos G.-G.& Willershausen, B. Clinical evaluation of nanocrystalline hydroxyapatite paste in the treatment of human periodontal bony defects-a randomized controlled clinical trial: 6-month results.J. Periodontol. 79, 394-400 (2008).
4. De Ruiter, A. et al. β-TCP versus autologous bone for repair of alveolar clefts in a goat model.Cleft Palate Craniofacial J. 48, 654-662 (2011).
5. Janssen, N. G.et al.Microstructured β-Tricalcium Phosphate Putty versus Autologous Bone for Repair of Alveolar Clefts in a Goat Model.Cleft Palate Craniofacial J. 54, 699-706 (2017).
6. Tanoue, R.et al.Three-dimensional ultrastructural analysis of the interface between an implanted demineralised dentin matrix and the surrounding newly formed bone.Sci. Rep. 8, 2858(2018).
7. Gao, X.et al.Nano-Structured Demineralized Human Dentin Matrix to Enhance Bone and Dental Repair and Regeneration.Appl. Sci. 9, 1013(2019).
8. Pan, J.et al.Investigating the repair of alveolar bone defects by gelatin methacrylate hydrogels-encapsulated human periodontal ligament stem cells.J. Mater. Sci. Mater. Med. 31, 3(2020).
9. Haugen H. J., Basu P., Sukul M., Mano J. F.& Reseland, J. E. Injectable Biomaterials for Dental Tissue Regeneration.Int. J. Mol. Sci. 21, 3442(2020).
10. Pan, Y.et al.Injectable hydrogel-loaded nano-hydroxyapatite that improves bone regeneration and alveolar ridge promotion.Mater. Sci. Eng. C. 116, 111158(2020).
11. Hasani-Sadrabadi, M. M. et al. An engineered cell-laden adhesive hydrogel promotes craniofacial bone tissue regeneration in rats.Sci. Transl. Med. 12, eaay6853 (2020).
12. Luo, S.et al.Bone marrow mesenchymal stem cells combine with Treated dentin matrix to build biological root.Sci. Rep. 7, 44-635 (2017).
13. Koga, T.et al.Bone Regeneration Using Dentin Matrix Depends on the Degree of Demineralization and Particle Size.PLoS One 11, e0147235(2016).
14. Li, R.et al.Human treated dentin matrix as a natural scaffold for complete human dentin tissue regeneration.Biomaterials 32, 4525-4538 (2011).
15. Müller, P.et al.Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells.J. Cell Mol. Med. 12, 281-291 (2008).
16. Viti, F.et al.Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis.PLoS One 11, 1(2016).
17. Avery S. J., Sadaghiani L., Sloan A. J.& Waddington, R. J. Analysing the bioactive makeup of demineralised dentine matrix on bone marrow mesenchymal stem cells for enhanced bone repair.Eur. Cell Mater. 34, 1-14 (2017).
18. Lo Giudice, G. et al. Dentin Morphology of Root Canal Surface: A Quantitative Evaluation Based on a Scanning Electronic Microscopy Study.Biomed. Res. Int. 2015, 164065-164067 (2015).
19. Niu, H.et al.Surface Topography Regulates Osteogenic Differentiation of MSCs via Crosstalk between FAK/MAPK and ILK/β-Catenin Pathways in a Hierarchically Porous Environment.ACS Biomater. Sci. Eng. 3, 3161-3175 (2017).
20. Abagnale, G.et al.Surface topography enhances differentiation of mesenchymal stem cells towards osteogenic and adipogenic lineages.Biomaterials 61, 316-326 (2015).
21. Prasopthum A., Cooper M., Shakesheff K. M.& Yang, J. Three-Dimensional Printed Scaffolds with Controlled Micro-/Nanoporous Surface Topography Direct Chondrogenic and Osteogenic Differentiation of Mesenchymal Stem Cells.ACS Appl Mater. Interfaces 11, 18896-18906 (2019).
22. Athirasala, A.et al.A dentin-derived hydrogel bioink for 3D bioprinting of cell laden scaffolds for regenerative dentistry.Biofabrication 10, 024101(2018).
23. Han, J.et al.Demineralized Dentin Matrix Particle-Based Bio-Ink for Patient-Specific Shaped 3D Dental Tissue Regeneration.Polymers 13, 1294(2021).
24. Niu, L.et al.Microfluidic Chip for Odontoblasts in Vitro.ACS Biomater. Sci. Eng. 5, 4844-4851 (2019).
25. França, C. M.et al.The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials.Lab. Chip 20, 405-413 (2020).
26. Rodrigues, N. S.et al.Biomaterial and Biofilm Interactions with the Pulp-Dentin Complex-on-a-Chip.J. Dent. Res. 100, 1136-1143 (2021).
27. Armstrong J. P.K., Burke, M., Carter, B. M., Davis, S. A. & Perriman, A. W. 3D Bioprinting Using a Templated Porous Bioink.Adv. Health. Mater. 5, 1724-1730 (2016).
28. Vanaei S., Parizi M. S., Vanaei S., Salemizadehparizi F.& Vanaei, H. R. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application.Engineered Regen. 2, 1-18 (2021).
29. Gopinathan J.& Noh, I. Recent trends in bioinks for 3D printing.Biomater. Res. 22, 11(2018).
30. Huebsch, N.et al.Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate.Nat. Mater. 9, 518-526 (2010).
31. Kawane, T.et al.Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3.Sci. Rep. 8, 13551(2018).
32. Golub E.& Boesze-Battaglia, K. The role of alkaline phosphatase in mineralization.Curr. Opin. Orthop. 18, 444-448 (2007).
33. Prins, H. J.et al.In vitro induction of alkaline phosphatase levels predicts in vivo bone forming capacity of human bone marrow stromal cells.Stem Cell Res. 12, 428-440 (2014).
34. Safadi, F.et al.In Bone Pathology (ed. Khurana, J.) 1-416
(Humana Press, 2009)..
35. Bao K., Papadimitropoulos A., Akgül B., Belibasakis G. N.& Bostanci, N. Establishment of an oral infection model resembling the periodontal pocket in a perfusion bioreactor system.Virulence 6, 265-273 (2015).
36. Mountcastle, S. E.et al.A review of co-culture models to study the oral microenvironment and disease.J. Oral. Microbiol. 12, 1773122(2020).
37. Slots, J., Potts, T. V.& Mashimo, P. A. Fusobacterium periodonticum, a new species from the human oral cavity.J. Dent. Res. 62, 960-963 (1983).
38. Huang, R., Li, M.& Gregory, R. L. Bacterial interactions in dental biofilm.Virulence 2, 435-444 (2011).
39. Ji, S., Choi, Y. S.& Choi, Y. Bacterial invasion and persistence: critical events in the pathogenesis of periodontitis?J. Periodontal. Res. 50, 570-585 (2015).
40. Bosch M., Sweet M. J., Parton R. G.& Pol, A. The impact of Covid-19 on patients with suspected cancer: An analysis of ED presentation and referrals to a quick diagnosis unit.J. Cell Biol. 220, 1-11 (2021).
41. Bosch, M.et al.Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense.Science 370, 6514(2020).
42. Khajah M. A.& Luqmani, Y. A. Involvement of Membrane Blebbing in Immunological Disorders and Cancer.Med. Princ. Pract. 25, 18-27 (2016).
43. Armstrong J. P.K. et al. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue.Nat. Commun. 6, 7405(2015).
44. Ferreira, S. A.et al.Neighboring cells override 3D hydrogel matrix cues to drive human MSC quiescence.Biomaterials 176, 13-23 (2018).
45. Maia F. R., Lourenço A. H., Granja P. L., Gonçalves R. M.& Barrias, C. C. Effect of cell density on mesenchymal stem cells aggregation in RGD-alginate 3D matrices under osteoinductive conditions.Macromol. Biosci. 14, 759-771 (2014).
46. Lei, G.et al.Differentiation of BMMSCs into odontoblast-like cells induced by natural dentine matrix.Arch. Oral. Biol. 58, 862-870 (2013).
47. Pinnell S. R.Regulation of collagen biosynthesis by ascorbic acid: a review.Yale J. Biol. Med. 58, 553-559 (1985).
48. de Jong, T., Bakker, A. D., Everts, V. & Smit, T. H. The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration.J. Periodontal Res. 52, 965-974 (2017).
49. Setiawati, R. & Rahardjo, P. In Osteogenesis and Bone Regeneration (ed. Yang, H.) 137-209 (IntechOpen, 2018).
50. Gilbert, S. In Development Biology, (Sinauer Associates, 2000).
51. Wang, Y.et al.Hydrogel oxygen reservoirs increase functional integration of neural stem cell grafts by meeting metabolic demands.Nat. Commun. 14, 457(2023).
52. Marx C., Gardner S., Harman R. M.& Van de Walle, G. R. The mesenchymal stromal cell secretome impairs methicillin-resistantStaphylococcus aureusbiofilms via cysteine protease activity in the equine model.Stem Cells Transl. Med. 9, 746-757 (2020).
53. Johnson, V.et al.Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness.Sci. Rep. 7, 1(2017).
54. Chow, L.et al.Antibacterial activity of human mesenchymal stem cells mediated directly by constitutively secreted factors and indirectly by activation of innate immune effector cells.Stem Cells Transl. Med. 9, 235-249 (2020).
55. Sutton, M. T.et al.Antimicrobial Properties of Mesenchymal Stem Cells: Therapeutic Potential for Cystic Fibrosis Infection, and Treatment.Stem Cells Int. 2016, 5303048-12 (2016).
56. Ollion J., Cochennec J., Loll F., Escudé C.& Boudier, T. TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization.Bioinformatics 29, 1840-1841 (2013).
PDF

Accesses

Citations

Detail

Sections
Recommended

/