The evolution of robotics: research and application progress of dental implant robotic systems

Chen Liu1,2,3,4, Yuchen Liu1,2,3,4, Rui Xie1,2,3,4, Zhiwen Li1,2,3,4, Shizhu Bai1,2,3,4, Yimin Zhao1,2,3,4

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 28. DOI: 10.1038/s41368-024-00296-x

The evolution of robotics: research and application progress of dental implant robotic systems

  • Chen Liu1,2,3,4, Yuchen Liu1,2,3,4, Rui Xie1,2,3,4, Zhiwen Li1,2,3,4, Shizhu Bai1,2,3,4, Yimin Zhao1,2,3,4
Author information +
History +

Abstract

The use of robots to augment human capabilities and assist in work has long been an aspiration. Robotics has been developing since the 1960s when the first industrial robot was introduced. As technology has advanced, robotic-assisted surgery has shown numerous advantages, including more precision, efficiency, minimal invasiveness, and safety than is possible with conventional techniques, which are research hotspots and cutting-edge trends. This article reviewed the history of medical robot development and seminal research papers about current research progress. Taking the autonomous dental implant robotic system as an example, the advantages and prospects of medical robotic systems would be discussed which would provide a reference for future research.

Cite this article

Download citation ▾
Chen Liu, Yuchen Liu, Rui Xie, Zhiwen Li, Shizhu Bai, …Yimin Zhao. The evolution of robotics: research and application progress of dental implant robotic systems. International Journal of Oral Science, 2024, 16(0): 28 https://doi.org/10.1038/s41368-024-00296-x

References

1. Fukuda, T., Dario, P.& Yang, G. Z. Humanoid robotics—history, current state of the art, and challenges.Sci. Robot. 2, eaar4043 (2017).
2. Dong J.What you should know about the history of robotics.Robot Ind. 1, 108-114 (2015).
3. Standardization I.O.F. Robots and robotic devices—vocabulary. ISO 8373:2021.
4. Liu H. H., Li L. J., Shi B., Xu C. W.& Luo, E. Robotic surgical systems in maxillofacial surgery: a review.Int. J. Oral. Sci. 9, 63-73 (2017).
5. Kwoh Y. S., Hou J., Jonckheere E. A.& Hayati, S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery.IEEE Trans. Biomed. Eng. 35, 153-160 (1988).
6. Troccaz, J., Dagnino, G.& Yang, G. Z. Frontiers of medical robotics: from concept to systems to clinical translation.Annu. Rev. Biomed. Eng. 21, 193-218 (2019).
7. Dupont, P. E.et al.A decade retrospective of medical robotics research from 2010 to 2020.Sci. Robot. 6, eabi8017 (2021).
8. Yang, G. Z.et al.Medical robotics—regulatory, ethical, and legal considerations for increasing levels of autonomy.Sci. Robot. 2, eaam8638 (2017).
9. Yip, M.et al.Artificial intelligence meets medical robotics.Science 381, 141-146 (2023).
10. Wang, T. M.et al.Medical Surgical Robotics. China Science Publishing & Media Ltd. http://find.nlc.cn/search/showDocDetails?docId=-9060319075756851951&dataSource=ucs01 (2013).
11. Liu, Y.et al. Fully automatic AI segmentation of dental implant surgery related tissues based on cone beam computed tomography images. Int. J. Oral Sci. (2024) (Accept for publication).
12. Alemzadeh K.& Raabe, D. Prototyping artificial jaws for the robotic dental testing simulator.Proc. Inst. Mech. Eng. Part H 222, 1209-1220 (2008).
13. Kazanzides, P.et al.Surgical and interventional robotics: core concepts, technology, and design.IEEE Robot. Autom. Mag. 15, 122-130 (2008).
14. Khan K., Dobbs T., Swan M. C., Weinstein G. S.& Goodacre, T. E. Trans-oral robotic cleft surgery (TORCS) for palate and posterior pharyngeal wall reconstruction: a feasibility study.J. Plast. Reconstr. Aesthet. Surg. 69, 97-100 (2016).
15. Nadjmi N.Transoral robotic cleft palate surgery.Cleft Palate Craniofac. J. 53, 326-331 (2016).
16. Vicini, C.et al.Transoral robotic tongue base resection in obstructive sleep apnoea-hypopnoea syndrome: a preliminary report.ORL J. Otorhinolaryngol. Relat. Spec. 72, 22-27 (2010).
17. Weinstein, G. S.et al.Transoral robotic surgery alone for oropharyngeal cancer: an analysis of local control.Arch. Otolaryngol. Head. Neck Surg. 138, 628-634 (2012).
18. Kayhan, F. T., Kaya, H.& Yazici, Z. M. Transoral robotic surgery for tongue-base adenoid cystic carcinoma.J. Oral. Maxillofac. Surg. 69, 2904-2908 (2011).
19. Olivetto M., Bettoni J., Testelin S.& Lefranc, M. Zygomatic implant placement using a robot-assisted flapless protocol: proof of concept.Int. J. Oral. Maxillofac. Surg. 52, 710-715 (2023).
20. Li, C.et al.Autonomous robotic surgery for zygomatic implant placement and immediately loaded implant-supported full-arch prosthesis: a preliminary research.Int. J. Implant. Dent. 9, 12(2023).
21. Saleh, M. A., Hanapiah, F. A.& Hashim, H. Robot applications for autism: a comprehensive review.Disabil. Rehabil. Assist. Technol. 16, 580-602 (2021).
22. Chen X. P.Advancement and challenges of medical robots from an interdisciplinary viewpoint.Chin. Bull. Life Sci. 34, 965-973 (2022).
23. Winchester, P.et al.Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury.Neurorehabil. Neural Repair 19, 313-324 (2005).
24. Alashram, A. R., Annino, G.& Padua, E. Robot-assisted gait training in individuals with spinal cord injury: a systematic review for the clinical effectiveness of Lokomat.J. Clin. Neurosci. 91, 260-269 (2021).
25. Topping M.An overview of the development of Handy 1, a rehabilitation robot to assist the severely disabled.Artif. Life Robot. 4, 188-192 (2000).
26. Meng, F., Peng, X. Y.& Xu, Y. N. Analysis of and research on the development of lower limb wearable exoskeleton.J. Mech. Transm. 46, 163-169 (2022).
27. Ezaki, S.et al.Analysis of gait motion changes by intervention using robot suit hybrid assistive limb (HAL) in myelopathy patients after decompression surgery for ossification of posterior longitudinal ligament.Front. Neurorobot. 15, 650118(2021).
28. Tegally H., San J. E., Giandhari J.& de Oliveira, T. Unlocking the efficiency of genomics laboratories with robotic liquid-handling.BMC Genomics 21, 729(2020).
29. Rupp N., Peschke K., Koppl M., Drissner D.& Zuchner, T. Establishment of low-cost laboratory automation processes using AutoIt and 4-axis robots.SLAS Technol. 27, 312-318 (2022).
30. Wu, Y. H., Fassert, C.& Rigaud, A. S. Designing robots for the elderly: appearance issue and beyond.Arch. Gerontol. Geriatr. 54, 121-126 (2012).
31. Liu, Y.et al.Boosting framework via clinical monitoring data to predict the depth of anesthesia.Technol. Health Care 30, 493-500 (2022).
32. Yang, G. Z.et al.Combating COVID-19-The role of robotics in managing public health and infectious diseases.Sci. Robot. 5, eabb5589 (2020).
33. Gao, A.et al.Progress in robotics for combating infectious diseases.Sci. Robot. 6, eabf1462 (2021).
34. Yu, H.et al.Management of systemic risk factors ahead of dental implant therapy: a beard well lathered is half shaved.J. Leukoc. Biol. 110, 591-604 (2021).
35 35.Cheng, L.et al. [A review of peri-implant microbiology].Hua XI Kou Qiang Yi Xue Za Zhi 37, 7-12 (2019).
36. Patel R.& Clarkson, E. Implant surgery update for the general practitioner: dealing with common postimplant surgery complications.Dent. Clin. North Am. 65, 125-134 (2021).
37. Herrera, D.et al.Prevention and treatment of peri-implant diseasesthe EFP S3 level clinical practice guideline. J. Clin. Periodontol. 50, 4-76 (2023).
38. Wu Q., Research on the creation and application of the spatial mapping devices of the dental implant robot system. Fourth Military Medical University. Vol. graduate. (2016).
39. Ruff C., Richards R., Ponniah A., Witherow H., Evans R.& Dunaway, D. Computed maxillofacial image in surgical navigation.Int. J. Comput. Assist. Radiol. Surg. 2, 412-418 (2007).
40. Tal H.& Moses, O. A comparison of panoramic radiography with computed tomography in the planning of implant surgery.Dentomaxillofac. Radiol. 20, 40-42 (1991).
41. Tattan M., Chambrone L., Gonzalez-Martin, O. & Avila-Ortiz, G. Static computer-aided, partially guided, and free-handed implant placement: a systematic review and meta-analysis of randomized controlled trials.Clin. Oral. Implant. Res. 31, 889-916 (2020).
42. Shen, P.et al.Accuracy evaluation of computer-designed surgical guide template in oral implantology.J. Cranio Maxillofac. Surg. 43, 2189-2194 (2015).
43. Vercruyssen M., Fortin T., Widmann G., Jacobs R.& Quirynen, M. Different techniques of static/dynamic guided implant surgery: modalities and indications.Periodontology 2000 66, 214-227 (2014).
44. Zhao Y.Clinical study of an autonomous dental implant robot. In: 2021 Compendium of Papers from the Sixth National Oral and Maxillofacial Prosthodontics Annual Meeting of the Oral and Maxillofacial Prosthodontics Committee of the Chinese Dental Association. 7-8 https://doi.org/10.26914/c.cnkihy.2021.063176(2021).
45. Kivovics M., Takacs A., Penzes D., Nemeth O.& Mijiritsky, E. Accuracy of dental implant placement using augmented reality-based navigation, static computer assisted implant surgery, and the free-hand method: an in vitro study.J. Dent. 119, 104070(2022).
46. Chen, W.et al.Accuracy of dental implant placement with a robotic system in partially edentulous patients: a prospective, single-arm clinical trial.Clin. Oral. Implant. Res. 34, 707-718 (2023).
47. Gwangho K., Hojin S., Sungbeen I., Dongwan K.& Sanghwa, J. A study on simulator of human-robot cooperative manipulator for dental implant surgery. 2009 IEEE International Symposium on Industrial Electronics, Seoul, Korea (South). 2159-2164 https://doi.org/10.1109/ISIE.2009.5222561(2009).
48. Alqutaibi A. Y., Hamadallah H. H., Abu Z. B., Aloufi A. M.& Tarawah, R. A. Applications of robots in implant dentistry: a scoping review. J. Prosthet. Dent. 11:S0022-3913(23)00770-9. Epub ahead of print. https://doi.org/10.1016/j.prosdent.2023.11.019(2023).
49. Dutreuil J. G.F. L. Computer Assisted Dental Implantology: A New Method and a Clinical Validation. In: Niessen, W.J., Viergever, M.A. (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2001. MICCAI 2001. 2208 https://doi.org/10.1007/3-540-45468-3_46 (2001).
50. R. Boesecke, J. B. J. R. Robot Assistant for Dental Implantology. (Springer: Berlin, Heidelberg, 2001).
51. Sun, X.et al.Automated dental implantation using image-guided robotics: registration results.Int. J. Comput. Assist. Radiol. Surg. 6, 627-634 (2011).
52. Sun X., Yoon Y., Li J.& Mckenzie, F. D. Automated image-guided surgery for common and complex dental implants.J. Med. Eng. Technol. 38, 251-259 (2014).
53. Bolding S. L.& Reebye, U. N. Accuracy of haptic robotic guidance of dental implant surgery for completely edentulous arches.J. Prosthet. Dent. 128, 639-647 (2022).
54. Zhou, G.et al.Intraoperative localization of small pulmonary nodules to assist surgical resection: a novel approach using a surgical navigation puncture robot system.Thorac. Cancer 11, 72-81 (2020).
55. K, Y.et al.Stereo vision based robot navigation system using modulated potential field for implant surgery. IEEE International Conference on Industrial Technology 493-498 https://doi.org/10.1109/ICIT.2015.7125147(2015).
56. S, Y., A, M. P. & Y, V. D. R., Automation of end effector guidance of robotic arm for dental implantation using computer vision. IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics 84-89. https://doi.org/10.1109/DISCOVER.2016.7806263(2016).
57. Yan, B.et al.Optics-guided Robotic System for Dental Implant Surgery.Chin. J. Mech. Eng. 35, 55(2022).
58. Xie R. The study on accurary of the Dental Implantology Robotic System. Fourth Military Medical University. Vol. graduate. (2016).
59. Wilmes B.& Drescher, D. Impact of insertion depth and predrilling diameter on primary stability of orthodontic mini-implants.Angle Orthod. 79, 609-614 (2009).
60. Wilmes, B., Su, Y. Y.& Drescher, D. Insertion angle impact on primary stability of orthodontic mini-implants.Angle Orthod. 78, 1065-1070 (2008).
61. Shi, J. Y.et al.Improved positional accuracy of dental implant placement using a haptic and machine-vision-controlled collaborative surgery robot: a pilot randomized controlled trial.J. Clin. Periodontol. 51, 24-32 (2024).
62. Qiao S. C., Wu X. Y., Shi J. Y., Tonetti M. S.& Lai, H. C. Accuracy and safety of a haptic operated and machine vision controlled collaborative robot for dental implant placement: a translational study.Clin. Oral. Implant. Res. 34, 839-849 (2023).
63. Yuan, F. S.et al.Preliminary study on the automatic preparation of dental implant socket controlled by micro-robot.Zhonghua Kou Qiang Yi Xue Za Zhi 53, 524-528 (2018).
64. Kan, T. S.et al.Evaluation of a custom-designed human-robot collaboration control system for dental implant robot.Int. J. Med. Robot. Comput. Assist. Surg. 18, e2346(2022).
65. Cheng, K. J.et al.Accuracy of dental implant surgery with robotic position feedback and registration algorithm: an in-vitro study.Comput. Biol. Med. 129, 104153(2021).
66. Feng, Y.et al.An image-guided hybrid robot system for dental implant surgery.Int. J. Comput. Assist. Radiol. Surg. 17, 15-26 (2022).
67. Tao, B.et al.The accuracy of a novel image-guided hybrid robotic system for dental implant placement: an in vitro study.Int. J. Med. Robot. Comput. Assist. Surg. 19, e2452(2023).
68. Li Z. W. The study on accuracy of the Dental Implantology Robotic System. Air Force Medical University Vol. Graduate. (2021).
69. Chen D., Chen J., Wu X., Chen Z.& Liu, Q. Prediction of primary stability via the force feedback of an autonomous dental implant robot. J. Prosthet. Dent. S0022-3913(23)00755-2. Epub ahead of print. https://doi.org/10.1016/j.prosdent.2023.11.008(2023).
70. Zhao, R.et al.Correlation between intraosseous thermal change and drilling impulse data during osteotomy within autonomous dental implant robotic system: an in vitro study.Clin. Oral Implant. Res. 35, 258-267 (2023).
71. Yang, S.et al.Accuracy of autonomous robotic surgery for single-tooth implant placement: a case series.J. Dent. 132, 104451(2023).
72. Rawal, S., Tillery, D. J.& Brewer, P. Robotic-assisted prosthetically driven planning and immediate placement of a dental implant.Compend. Contin. Educ. Dent. 41, 26-30 (2020).
73. Li Z., Xie R., Bai S.& Zhao, Y. Implant placement with an autonomous dental implant robot: a clinical report. J. Prosthet. Dent. S0022-3913(23)00124-5. Epub ahead of print. https://doi.org/10.1016/j.prosdent.2023.02.014(2023).
74. Talib, H. S., Wilkins, G. N.& Turkyilmaz, I. Flapless dental implant placement using a recently developed haptic robotic system.Br. J. Oral. Maxillofac. Surg. 60, 1273-1275 (2022).
75. Ali M.Flapless dental implant surgery enabled by haptic robotic guidance: a case report. Clin. Implant Dent. Relat. Res. Epub ahead of print. https://doi.org/10.1111/cid.13279(2023).
76. Chen, J.et al.Comparison the accuracy of a novel implant robot surgery and dynamic navigation system in dental implant surgery: an in vitro pilot study.BMC Oral. Health 23, 179(2023).
77. Xu, Z.et al.Accuracy and efficiency of robotic dental implant surgery with different human-robot interactions: an in vitro study.J. Dent. 137, 104642(2023).
78. Yang S., Chen J., Li A., Li P.& Xu, S. Autonomous robotic surgery for immediately loaded implant-supported maxillary full-arch prosthesis: a case report.J. Clin. Med. 11, 6594(2022).
79. Jia S., Wang G., Zhao Y.& Wang, X. Accuracy of an autonomous dental implant robotic system versus static guide-assisted implant surgery: a retrospective clinical study. J. Prosthet. Dent. S0022-3913(23)00284-6. Epub ahead of print. https://doi.org/10.1016/j.prosdent.2023.04.027(2023).
80. Bai, S. Z.et al.Animal experiment on the accuracy of the Autonomous Dental Implant Robotic System.Zhonghua Kou Qiang Yi Xue Za Zhi 56, 170-174 (2021).
81. Zhao, Y.et al.Effect of the number and distribution of fiducial markers on the accuracy of robot-guided implant surgery in edentulous mandibular arches: an in vitro study.J. Dent. 134, 104529(2023).
82. Mozer P. S.Accuracy and deviation analysis of static and robotic guided implant surgery: a case study.Int. J. Oral. Maxillofac. Implants 35, e86-e90 (2020).
83. Chen, J.et al.Accuracy of immediate dental implant placement with task-autonomous robotic system and navigation system: an in vitro study. Clin. Oral Implant. Res. Epub ahead of print. https://doi.org/10.1111/clr.14104(2023).
84. Cao, Z.et al.Pilot study of a surgical robot system for zygomatic implant placement.Med. Eng. Phys. 75, 72-78 (2020).
85. Zhang K., Yu M. L., C, C. & Xu, B. H. Preliminary research on the accuracy of implant surgery assisted by implant surgery robot.China Med. Device Inf. 27, 25-28 (2021).
86. Tao, B.et al.Accuracy of dental implant surgery using dynamic navigation and robotic systems: an in vitro study.J. Dent. 123, 104170(2022).
87. Ding, Y.et al.Accuracy of a novel semi-autonomous robotic-assisted surgery system for single implant placement: a case series.J. Dent. 139, 104766(2023).
88. Li, P.et al.Accuracy of autonomous robotic surgery for dental implant placement in fully edentulous patients: a retrospective case series study.Clin. Oral. Implant. Res. 34, 1428-1437 (2023).
89. Wang, W.et al. Accuracy of the Yakebot dental implant robotic system versus fully guided static computer-assisted implant surgery template in edentulous jaw implantation: a preliminary clinical study. Clin. Implant Dent. Relat. Res. https://doi.org/10.1111/cid.13278. Epub ahead of print (2023).
90. Xie, R.et al.Clinical evaluation of autonomous robotic-assisted full-arch implant surgery: a 1-year prospective clinical study. Clin. Oral Implant. Res. Epub ahead of print. https://doi.org/10.1111/clr.14243(2024).
91. Takacs, A.et al.Advancing accuracy in guided implant placement: a comprehensive meta-analysis: meta-analysis evaluation of the accuracy of available implant placement methods.J. Dent. 139, 104748(2023).
92. He, J.et al. In vitro and in vivo accuracy of autonomous robotic vs. fully guided static computer-assisted implant surgery. Clin. Implant Dent. Relat. Res. https://doi.org/10.1111/cid.13302 (2024). Epub ahead of print.
93. Zhang, S.et al.Accuracy of implant placement via dynamic navigation and autonomous robotic computer-assisted implant surgery methods: a retrospective study.Clin. Oral. Implant. Res. 35, 220-229 (2024).
94. Shi B.& Huang, H. Computational technology for nasal cartilage-related clinical research and application.Int. J. Oral. Sci. 12, 21(2020).
95. Zhou L., Teng W., Li X.& Su, Y. Accuracy of an optical robotic computer-aided implant system and the trueness of virtual techniques for measuring robot accuracy evaluated with a coordinate measuring machine in vitro. J. Prosthet. Dent. 11:S0022-3913(23)00751-5. Epub ahead of print. https://doi.org/10.1016/j.prosdent.2023.11.004(2023).
96. Forsmark, A.et al.Health economic analysis of open and robot-assisted laparoscopic surgery for prostate cancer within the prospective multicentre LAPPRO trial.Eur. Urol. 74, 816-824 (2018).
97. Rokhshad, R., Keyhan, S. O.& Yousefi, P. Artificial intelligence applications and ethical challenges in oral and maxillo-facial cosmetic surgery: a narrative review.Maxillofac. Plast. Reconstr. Surg. 45, 14(2023).
98. Gofrit, O. N.et al.Surgeons’ perceptions and injuries during and after urologic laparoscopic surgery.Urology 71, 404-407 (2008).
99. Tonetti, M. S.et al.Relevant domains, core outcome sets and measurements for implant dentistry clinical trials: the Implant Dentistry Core Outcome Set and Measurement (ID-COSM) international consensus report.J. Clin. Periodontol. 50, 5-21 (2023).
100. Marcus, H. J.et al.The IDEAL framework for surgical robotics: development, comparative evaluation and long-term monitoring.Nat. Med. 30, 61-75 (2024).
101. Sun Z. J.& Tian, Z. M. Advances in neurosurgical surgical robotics.Chin. J. Minimally Invasive Neurosurg 5, 238-240 (2008).
102. Abdul-Muhsin, H. P. V. History of Robotic Surgery. In: (eds Kim, K.) Robotics in General Surgery. (Springer, New York, NY, 2014).
103. Ewing D. R., Pigazzi A., Wang Y.& Ballantyne, G. H. Robots in the operating room-the history.Semin. Laparosc. Surg. 11, 63-71 (2004).
104. Leal G. T.& Campos, C. O. 30 Years of robotic surgery.World J. Surg. 40, 2550-2557 (2016).
105. Falcone T., Goldberg J., Garcia-Ruiz, A., Margossian, H. & Stevens, L. Full robotic assistance for laparoscopic tubal anastomosis: a case report.J. Laparoendosc. Adv. Surg. Tech. 9, 107-113 (1999).
106. Maeso, S.et al.Efficacy of the Da Vinci surgical system in abdominal surgery compared with that of laparoscopy: a systematic review and meta-analysis.Ann. Surg. 252, 254-262 (2010).
107. M, J.et al.The hands-on orthopaedic robot “acrobot”: Early clinical trials of total knee replacement surgery.IEEE Trans. Robot. Autom. 19, 902-911 (2003).
108. Schweikard, A., Shiomi, H.& Adler, J. Respiration tracking in radiosurgery.Med. Phys. 31, 2738-2741 (2004).
109. Lieberman, I. H.et al.Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: Part I—technical development and a test case result.Neurosurgery 59, 641-650 (2006).
110. Reddy, V. Y.et al.View-synchronized robotic image-guided therapy for atrial fibrillation ablation: experimental validation and clinical feasibility.Circulation 115, 2705-2714 (2007).
111. Subramanian P., Wainwright T. W., Bahadori S.& Middleton, R. G. A review of the evolution of robotic-assisted total hip arthroplasty.Hip Int. 29, 232-238 (2019).
112. S V., G P. H., J F. M., J, A. L. & P,C. ViKY robotic scope holder: initial clinical experience and preliminary results using instrument tracking.IEEE/ASME Trans. Mechatron. 15, 879-886 (2010).
113. Zhao, R. F., Li, Z. W.& Bai, S. Z. Application of surgical robots in stomatology.Chin. J. Robot. Surg. 3, 351-366 (2022).
114. Riga C. V., Bicknell C. D., Rolls A., Cheshire N. J.& Hamady, M. S. Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system.J. Vasc. Interv. Radiol. 24, 191-196 (2013).
115. Herry, Y.et al.Improved joint-line restitution in unicompartmental knee arthroplasty using a robotic-assisted surgical technique.Int. Orthop. 41, 2265-2271 (2017).
116. Wu Q.& Zhao, Y. M. Application of robotics in stomatology.Int. J. Comput. Dent. 45, 615-620 (2018).
117. Lang, S.et al.A european multicenter study evaluating the flex robotic system in transoral robotic surgery.Laryngoscope 127, 391-395 (2017).
PDF

Accesses

Citations

Detail

Sections
Recommended

/