Transcriptomic and cellular decoding of scaffolds-induced suture mesenchyme regeneration

Jiayi Wu1,2, Feifei Li1,3, Peng Yu1, Changhao Yu1,2, Chuyi Han1, Yitian Wang1, Fanyuan Yu1,2, Ling Ye1,2

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 33. DOI: 10.1038/s41368-024-00295-y

Transcriptomic and cellular decoding of scaffolds-induced suture mesenchyme regeneration

  • Jiayi Wu1,2, Feifei Li1,3, Peng Yu1, Changhao Yu1,2, Chuyi Han1, Yitian Wang1, Fanyuan Yu1,2, Ling Ye1,2
Author information +
History +

Abstract

Precise orchestration of cell fate determination underlies the success of scaffold-based skeletal regeneration. Despite extensive studies on mineralized parenchymal tissue rebuilding, regenerating and maintaining undifferentiated mesenchyme within calvarial bone remain very challenging with limited advances yet. Current knowledge has evidenced the indispensability of rebuilding suture mesenchymal stem cell niches to avoid severe brain or even systematic damage. But to date, the absence of promising therapeutic biomaterials/scaffolds remains. The reason lies in the shortage of fundamental knowledge and methodological evidence to understand the cellular fate regulations of scaffolds. To address these issues, in this study, we systematically investigated the cellular fate determinations and transcriptomic mechanisms by distinct types of commonly used calvarial scaffolds. Our data elucidated the natural processes without scaffold transplantation and demonstrated how different scaffolds altered in vivo cellular responses. A feasible scaffold, polylactic acid electrospinning membrane (PLA), was next identified to precisely control mesenchymal ingrowth and self-renewal to rebuild non-osteogenic suture-like tissue at the defect center, meanwhile supporting proper osteointegration with defect bony edges. Especially, transcriptome analysis and cellular mechanisms underlying the well-orchestrated cell fate determination of PLA were deciphered. This study for the first time cellularly decoded the fate regulations of scaffolds in suture-bony composite defect healing, offering clinicians potential choices for regenerating such complicated injuries.

Cite this article

Download citation ▾
Jiayi Wu, Feifei Li, Peng Yu, Changhao Yu, Chuyi Han, Yitian Wang, Fanyuan Yu, …Ling Ye. Transcriptomic and cellular decoding of scaffolds-induced suture mesenchyme regeneration. International Journal of Oral Science, 2024, 16(0): 33 https://doi.org/10.1038/s41368-024-00295-y

References

1. Lenton K. A., Nacamuli R. P., Wan D. C., Helms J. A.& Longaker, M. T. Cranial Suture Biology. In Current Topics in Developmental Biology (eds Schatten, G. P. et al.) (Academic Press, 2005).
2. Manzanares M. C.,Goret-Nicaise, M. & Dhem, A. Metopic sutural closure in the human skull.J. Anat. 161, 203-215 (1988).
3. Zhao, H.et al.The suture provides a niche for mesenchymal stem cells of craniofacial bones.Nat. Cell Biol. 17, 386-396 (2015).
4. Maruyama T., Jeong J., Sheu T.-J.& Hsu, W. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.Nat. Commun. 7, 10526(2016).
5. Li, B.et al.Cranial suture mesenchymal stem cells: Insights and advances.Biomolecules 11, 1129(2021).
6. Wilk, K.et al.Postnatal calvarial skeletal stem cells expressing PRX1 reside exclusively in the calvarial sutures and are required for bone regeneration.Stem Cell Rep. 8, 933-946 (2017).
7. Doro, D. H., Grigoriadis, A. E.& Liu, K. J. Calvarial suture-derived stem cells and their contribution to cranial bone repair.Front. Physiol. 8, 956(2017).
8. Menon, S.et al.Skeletal stem and progenitor cells maintain cranial suture patency and prevent craniosynostosis.Nat. Commun. 12, 4640(2021).
9. Guo, Y.et al.BMP-IHH-mediated interplay between mesenchymal stem cells and osteoclasts supports calvarial bone homeostasis and repair.Bone Res. 6, 30(2018).
10. Park S., Zhao H., Urata M.& Chai, Y. Sutures possess strong regenerative capacity for calvarial bone injury.Stem Cells Dev. 25, 1801-1807 (2016).
11. Szpalski C., Barr J., Wetterau M., Saadeh P. B.& Warren, S. M. Cranial bone defects: current and future strategies.Neurosurg. Focus 29, E8(2010).
12. Malcolm, J. G.et al.Autologous cranioplasty is associated with increased reoperation rate: A systematic review and meta-analysis.World Neurosurg. 116, 60-68 (2018).
13. Sahoo N. K., Tomar K., Thakral A.& Rangan, N. M. Complications of cranioplasty.J. Craniofac. Surg. 29, 1344-1348 (2018).
14. Gerstl J. V.E. et al. Complications and cosmetic outcomes of materials used in cranioplasty following decompressive craniectomy—a systematic review, pairwise meta-analysis, and network meta-analysis.Acta Neurochir. 164, 3075-3090 (2022).
15. Mommaerts M. Y., Caemaert J., Dermaut L. R.& Stricker, M. Unicoronal suture autotransplantation in the rabbit.Childs Nerv. Syst. 19, 211-216 (2003).
16. Yeow V. K.& Wu, W. T. Effect of cranial suture autotransplantation from metopic to coronal suture.J. Craniofac. Surg. 9, 404-409 (1998).
17. Mooney, M. P.et al.Correction of coronal suture synostosis using suture and dura mater allografts in rabbits with familial craniosynostosis.Cleft Palate Craniofac. J. 38, 206-225 (2001).
18. Cowan, C. M.et al.Adipose-derived adult stromal cells heal critical-size mouse calvarial defects.Nat. Biotechnol. 22, 560-567 (2004).
19. Liu, Y.et al.Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α.Nat. Med. 17, 1594-1601 (2011).
20. Kaku, M.et al.Mesenchymal stem cell-induced cranial suture-like gap in rats.Plast. Reconstr. Surg. 127, 69-77 (2011).
21. Yu, M.et al. Cranial suture regeneration mitigates skull and neurocognitive defects in craniosynostosis. Cell 184, 243-256.e18 (2021).
22. Zomorodian E.& Baghaban Eslaminejad, M. Mesenchymal stem cells as a potent cell source for bone regeneration.Stem Cells Int. 2012, e980353(2012).
23. Koons, G. L., Diba, M.& Mikos, A. G. Materials design for bone-tissue engineering.Nat. Rev. Mater. 5, 584-603 (2020).
24. Mardas, N., Kostopoulos, L.& Karring, T. Bone and suture regeneration in calvarial defects by e-PTFE-membranes and demineralized bone matrix and the impact on calvarial growth: an experimental study in the rat.J. Craniofac. Surg. 13, 453-462 (2002).
25. Kostopoulos L.& Karring, T. Regeneration of the sagittal suture by GTR and its impact on growth of the cranial vault.J. Craniofac. Surg. 11, 553-561 (2000).
26. Flaherty, K., Singh, N.& Richtsmeier, J. T. Understanding craniosynostosis as a growth disorder.Wiley Interdiscip. Rev.: Dev. Biol. 5, 429-459 (2016).
27. Mamidi, N., Ijadi, F. & Norahan, M. H. Leveraging the recent advancements in GelMA scaffolds for bone tissue engineering: an assessment of challenges and opportunities. Biomacromolecules https://doi.org/10.1021/acs.biomac.3c00279 (2023).
28. Di Martino, A., Sittinger, M. & Risbud, M. V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering.Biomaterials 26, 5983-5990 (2005).
29. Gong, T.et al.Nanomaterials and bone regeneration.Bone Res. 3, 1-7 (2015).
30. Fattahi, F., Khoddami, A.& Avinc, O. Poly(lactic acid) (PLA) nanofibers for bone tissue engineering.J. Text. Polym. 7, 47-64 (2019).
31. Yu, P.et al.Photo-driven self-healing of arbitrary nondestructive damage in polyethylene-based nanocomposites.ACS Appl. Mater. Interfaces 12, 1650-1657 (2020).
32. Roth, D. A.et al.Studies in cranial suture biology: Part I. Increased Immunoreactivity for TGF-β Isoforms (β1, β2, and β3) During Rat Cranial Suture Fusion.J. Bone Miner. Res. 12, 311-321 (1997).
33. Chan C. K.F. et al. Identification and specification of the mouse skeletal stem cell.Cell 160, 285-298 (2015).
34. Goodman S. B., Pajarinen J., Yao Z.& Lin, T. Inflammation and bone repair: From particle disease to tissue regeneration.Front. Bioeng. Biotech. 7, 230(2019).
35. Wynn T. A.& Ramalingam, T. R. Mechanisms of fibrosis: therapeutic translation for fibrotic disease.Nat. Med. 18, 1028-1040 (2012).
36. Yu, P.et al.Mechanistically scoping cell-free and cell-dependent artificial scaffolds in rebuilding skeletal and dental hard tissues.Adv. Mater. 34, 2107922(2022).
37. Fei, F.et al.Role of metastasis-induced protein S100A4 in human non-tumor pathophysiologies.Cell Biosci. 7, 64(2017).
38. Jindal, P.et al.Optimizing cranial implant and fixture design using different materials in cranioplasty.Proc. Inst. Mech. Eng., Part L 237, 107-121 (2023).
39. Dewan, M. C.et al.Estimating the global incidence of traumatic brain injury.J. Neurosurg. 130, 1080-1097 (2018).
40. Opperman L. A.Cranial sutures as intramembranous bone growth sites.Dev. Dyn. 219, 472-485 (2000).
41. Slater, B. J.et al.Cranial sutures: A brief review.Plast. Reconstr. Surg. 121, 170e-178e (2008).
42. Kajdic, N., Spazzapan, P.& Velnar, T. Craniosynostosis - Recognition, clinical characteristics, and treatment.Bosn. J. Basic Med. Sci. 18, 110-116 (2017).
43. Baykal, D., Balçin, R. N.& Taşkapilioğlu, M. Ö. Amount of reoperation following surgical repair of nonsyndromic craniosynostosis at a single center.Turk. J. Med. Sci. 52, 1235-1240 (2022).
44. He Y., Lin S., Ao Q.& He, X. The co-culture of ASCs and EPCs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats.Stem Cell Res. Ther. 11, 338(2020).
45. Spicer, P. P.et al.Evaluation of bone regeneration using the rat critical size calvarial defect.Nat. Protoc. 7, 1918-1929 (2012).
46. Li, Y., Xiao, Y.& Liu, C. The horizon of materiobiology: A perspective on material-guided cell behaviors and tissue engineering.Chem. Rev. 117, 4376-4421 (2017).
47. Swanson, W. B.et al.Macropore design of tissue engineering scaffolds regulates mesenchymal stem cell differentiation fate.Biomaterials 272, 120769(2021).
48. Karageorgiou V.& Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis.Biomaterials 26, 5474-5491 (2005).
49. Gupte, M. J.et al.Pore size directs bone marrow stromal cell fate and tissue regeneration in nanofibrous macroporous scaffolds by mediating vascularization.Acta Biomater. 82, 1-11 (2018).
50. O’Brien, F. J., Harley, B. A., Yannas, I. V. & Gibson, L. J. The effect of pore size on cell adhesion in collagen-GAG scaffolds.Biomaterials 26, 433-441 (2005).
51. Vissers C. A.B., Harvestine, J. N. & Leach, J. K. Pore size regulates mesenchymal stem cell response to Bioglass-loaded composite scaffolds.J. Mater. Chem. B 3, 8650-8658 (2015).
52. Murphy C. M., Duffy G. P., Schindeler A.& O’brien, F. J. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types.J. Biomed. Mater. Res. A 104, 291-304 (2016).
53. Akay, G., Birch, M. A.& Bokhari, M. A. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro.Biomaterials 25, 3991-4000 (2004).
54. Mehr N. G., Li X., Chen G., Favis B. D.& Hoemann, C. D. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds.J. Biomed. Mater. Res. A 103, 2449-2459 (2015).
55. Ai, C., Liu, L. & Goh, J. C.-H. Pore size modulates in vitro osteogenesis of bone marrow mesenchymal stem cells in fibronectin/gelatin coated silk fibroin scaffolds. Mater. Sci. Eng. C. 124, 112088 (2021).
56. Chang, H.-I., Wang, Y., Chang, H.-I. & Wang, Y. Cell responses to surface and architecture of tissue engineering scaffolds. In Regenerative Medicine and Tissue Engineering - Cells and Biomaterials (eds Eberli, D.) (IntechOpen, 2011).
57. Yousaf M. N.Model substrates for studies of cell mobility.Curr. Opin. Chem. Biol. 13, 697-704 (2009).
58. Yang S., Leong K.-F., Du Z.& Chua, C.-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors.Tissue Eng. 7, 679-689 (2001).
59. Wei S., Ma J.-X., Xu L., Gu X.-S.& Ma, X.-L. Biodegradable materials for bone defect repair.Mil. Med. Res. 7, 54(2020).
60. Freed, L. E., Martin, I.& Vunjak-Novakovic, G. Frontiers in tissue engineering.In vitro modulation of chondrogenesis. Clin. Orthop.Relat. Res. 367, S46-S58 (1999).
61. Caires, H. R.et al.Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: a comprehensive study with different immune cells.J. R. Soc., Interface 13, 20160570(2016).
62. Behr, B., Longaker, M. T.& Quarto, N. Differential activation of canonical Wnt signaling determines cranial sutures fate: A novel mechanism for sagittal suture craniosynostosis.Dev. Biol. 344, 922-940 (2010).
63. Maruyama T., Mirando A. J., Deng, C.-X. & Hsu, W. The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Sci. Signal. 3, ra40-ra40 (2010).
64. Quarto, N., Behr, B.& Longaker, M. T. Opposite spectrum of activity of canonical Wnt signaling in the osteogenic context of undifferentiated and differentiated mesenchymal cells: implications for tissue engineering.Tissue Eng., Part A 16, 3185-3197 (2010).
65. Maruyama, T.et al.BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis.Sci. Transl. Med. 13, eabb4416 (2021).
66. Ji, C.et al.Transcriptome analysis revealed the symbiosis niche of 3D scaffolds to accelerate bone defect healing.Adv. Sci. 9, 2105194(2022).
PDF

Accesses

Citations

Detail

Sections
Recommended

/