Stromal thrombospondin 1 suppresses angiogenesis in oral submucous fibrosis

Xiao Yang1, Hui Zhao1,2, Rui Li1, Yang Chen1, Zhi Xu3, Zhengjun Shang1,2

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 17. DOI: 10.1038/s41368-024-00286-z

Stromal thrombospondin 1 suppresses angiogenesis in oral submucous fibrosis

  • Xiao Yang1, Hui Zhao1,2, Rui Li1, Yang Chen1, Zhi Xu3, Zhengjun Shang1,2
Author information +
History +

Abstract

A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model, treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-β1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs) were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (vFAOs). Consistently, treatment with arecoline reduced the expression of CD31 in vFAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.

Cite this article

Download citation ▾
Xiao Yang, Hui Zhao, Rui Li, Yang Chen, Zhi Xu, …Zhengjun Shang. Stromal thrombospondin 1 suppresses angiogenesis in oral submucous fibrosis. International Journal of Oral Science, 2024, 16(0): 17 https://doi.org/10.1038/s41368-024-00286-z

References

1. Tilakaratne W. M., Klinikowski M. F., Saku T., Peters T. J.& Warnakulasuriya, S. Oral submucous fibrosis: review on aetiology and pathogenesis.Oral Oncol. 42, 561-568 (2006).
2. Shih Y. H., Wang T. H., Shieh T. M.& Tseng, Y. H. Oral submucous fibrosis: a review on etiopathogenesis, diagnosis, and therapy.Int. J. Mol. Sci. 20, 2940(2019).
3. Ray, J. G., Chatterjee, R.& Chaudhuri, K. Oral submucous fibrosis: a global challenge. rising incidence, risk factors, management, and research priorities.Periodontol 2000 80, 200-212 (2019).
4. Sharma M.& Radhakrishnan, R. Limited mouth opening in oral submucous fibrosis: reasons, ramifications, and remedies.J. Oral Pathol. Med. 46, 424-430 (2017).
5. Qin X., Ning Y., Zhou L.& Zhu, Y. Oral submucous fibrosis: etiological mechanism, malignant transformation, therapeutic approaches and targets.Int. J. Mol. Sci. 24, 4992(2023).
6. Chaudhary M., Bajaj S., Bohra S., Swastika N.& Hande, A. The domino effect: role of hypoxia in malignant transformation of oral submucous fibrosis.J. Oral Maxillofac Pathol. 19, 122-127 (2015).
7. Tekade, S. A.et al. Early stage oral submucous fibrosis is characterized by increased vascularity as opposed to advanced stages. J. Clin. Diagn Res. 11, Zc92-zc96 (2017).
8. Thakkannavar S. S.& Naik, V. V. Histochemical and immunohistochemical analysis of collagen fibers and microvascular density in various grades of oral submucous fibrosis.Iran J. Pathol. 14, 127-134 (2019).
9. Tseng, S. K.et al.Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells.Clin. Oral Investig. 16, 1267-1273 (2012).
10. Ullah M., Cox S., Kelly E., Boadle R.& Zoellner, H. Arecoline is cytotoxic for human endothelial cells.J. Oral Pathol. Med. 43, 761-769 (2014).
11. Dai, Z.et al.Role of autophagy induced by arecoline in angiogenesis of oral submucous fibrosis.Arch. Oral. Biol. 102, 7-15 (2019).
12. Li, J.et al.YAP-induced endothelial-mesenchymal transition in oral submucous fibrosis.J. Dent. Res. 98, 920-929 (2019).
13. Kaur, S.et al.Functions of thrombospondin-1 in the tumor microenvironment.Int. J. Mol. Sci. 22, 4570(2021).
14. Sweetwyne M. T.& Murphy-Ullrich, J. E. Thrombospondin1 in tissue repair and fibrosis: TGF-β-dependent and independent mechanisms.Matrix Biol. 31, 178-186 (2012).
15. Lawler J.Counter regulation of tumor angiogenesis by vascular endothelial growth factor and thrombospondin-1.Semin. Cancer Biol. 86, 126-135 (2022).
16. Dawson, D. W.et al.CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells.J. Cell Biol. 138, 707-717 (1997).
17. Ren, B.et al.A double hit to kill tumor and endothelial cells by TRAIL and antiangiogenic 3TSR.Cancer Res. 69, 3856-3865 (2009).
18. Murphy-Ullrich, J. E. & Suto, M. J. Thrombospondin-1 regulation of latent TGF-β activation: a therapeutic target for fibrotic disease. Matrix Biol. 68-69, 28-43 (2018).
19. Daubon, T.et al.Deciphering the complex role of thrombospondin-1 in glioblastoma development.Nat. Commun. 10, 1146(2019).
20. Joseph, J. V. et al. TGF-β promotes microtube formation in glioblastoma through thrombospondin 1.Neuro. Oncol. 24, 541-553 (2022).
21. Khan, I.et al.Role of TGF-β and BMP7 in the pathogenesis of oral submucous fibrosis.Growth Factors 29, 119-127 (2011).
22. Hu, Y.et al.Gene expression profiling of oral submucous fibrosis using oligonucleotide microarray.Oncol. Rep. 20, 287-294 (2008).
23. Khan I., Kumar N., Pant I., Narra S.& Kondaiah, P. Activation of TGF-β pathway by areca nut constituents: a possible cause of oral submucous fibrosis.PLoS One. 7, e51806(2012).
24. Smith R. C.& Tabar, V. Constructing and deconstructing cancers using human pluripotent stem cells and organoids.Cell. Stem. Cell. 24, 12-24 (2019).
25. He, W.et al.Long-term maintenance of human endometrial epithelial stem cells and their therapeutic effects on intrauterine adhesion.Cell Biosci. 12, 175(2022).
26. Chen, X.et al.Phenotype transition of fibroblasts incorporated into patient-derived oral carcinoma organoids.Oral Dis. 29, 913-922 (2023).
27. Pant I., Kumar N., Khan I., Rao S. G.& Kondaiah, P. Role of areca nut induced TGF-β and epithelial-mesenchymal interaction in the pathogenesis of oral submucous fibrosis.PLoS One. 10, e0129252(2015).
28. Wang, Z.et al.Senescent epithelial cells remodel the microenvironment for the progression of oral submucous fibrosis through secreting TGF-β1.Peer J. 11, e15158(2023).
29. Llopiz, D.et al.Peptide inhibitors of transforming growth factor-beta enhance the efficacy of antitumor immunotherapy.Int. J. Cancer 125, 2614-2623 (2009).
30. Dramé M.,Garcia-Rodriguez, F. J., Buchrieser, C. & Escoll, P. High-content assay to measure mitochondrial function and bacterial vacuole size in infected human primary macrophages. STAR Protoc. https://doi.org/10.1016/j.xpro.2023.102175(2023).
31. Krishna, S. M.et al.A peptide antagonist of thrombospondin-1 promotes abdominal aortic aneurysm progression in the angiotensin II-infused apolipoprotein-E-deficient mouse.Arterioscler Thromb. Vasc. Biol. 35, 389-398 (2015).
32. Khan, I.et al.Epithelial atrophy in oral submucous fibrosis is mediated by copper (II) and arecoline of areca nut.J. Cell Mol. Med. 19, 2397-2412 (2015).
33. Kondaiah, P., Pant, I.& Khan, I. Molecular pathways regulated by areca nut in the etiopathogenesis of oral submucous fibrosis.Periodontol. 2000 80, 213-224 (2019).
34. Moutasim, K. A.et al.Betel-derived alkaloid up-regulates keratinocyte alphavbeta6 integrin expression and promotes oral submucous fibrosis.J. Pathol. 223, 366-377 (2011).
35. Henderson, N. C., Rieder, F.& Wynn, T. A. Fibrosis: from mechanisms to medicines.Nature 587, 555-566 (2020).
36. Meng X. M.,Nikolic-Paterson, D. J. & Lan, H. Y. TGF-β: the master regulator of fibrosis.Nat. Rev. Nephrol. 12, 325-338 (2016).
37. Hsieh Y. P., Wu K. J., Chen H. M.& Deng, Y. T. Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: suppression by epigallocatechin-3-gallate.J. Formos Med. Assoc. 117, 527-534 (2018).
38. Kitami, K.et al.Peritoneal restoration by repurposing vitamin D inhibits ovarian cancer dissemination via blockade of the TGF-β1/thrombospondin-1 axis.Matrix Biol. 109, 70-90 (2022).
39. Neelisetty, S.et al.Renal fibrosis is not reduced by blocking transforming growth factor-β signaling in matrix-producing interstitial cells.Kidney Int. 88, 503-514 (2015).
40. Ahamed J., Janczak C. A., Wittkowski K. M.& Coller, B. S. In vitro and in vivo evidence that thrombospondin-1 (TSP-1) contributes to stirring- and shear-dependent activation of platelet-derived TGF-beta1.PLoS One. 4, e6608(2009).
41. Kalluri, R. The biology and function of fibroblasts in cancer.Nat. Rev. Cancer 16, 582-598 (2016).
42. Sahai E. A.-O. et al. A framework for advancing our understanding of cancer-associated fibroblasts.Nat. Rev. Cancer. 20, 174-186 (2020).
43. Rao N. R.& More, C. B. in Diseases of the Oral Mucosa: Study Guide and Review (ed E. Schmidt) (Springer International Publishing, 2021).
44. Zhao H., Hu C. Y., Chen W. M.& Huang, P. Lactate promotes cancer stem-like property of oral sequamous cell carcinoma.Curr. Med. Sci. 39, 403-409 (2019).
45. Driehuis, E.et al. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov. 9, 852-871, https://doi.org/10.1158/2159-8290.Cd-18-1522 (2019).
46. Jiang, E.et al.Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma.Faseb. j. 33, 5690-5703 (2019).
47. Zhao, H., Jiang, E.& Shang, Z. 3D co-culture of cancer-associated fibroblast with oral cancer organoids.J. Dent. Res. 100, 201-208 (2021).
48. Zhao H., Li R., Chen Y., Yang X.& Shang, Z. Stromal nicotinamide N-methyltransferase orchestrates the crosstalk between fibroblasts and tumour cells in oral squamous cell carcinoma: evidence from patient-derived assembled organoids.Oncogene 42, 1166-1180 (2023).
49. Liang, W.et al.Cancer cells corrupt normal epithelial cells through miR-let-7c-rich small extracellular vesicle-mediated downregulation of p53/PTEN.Int. J. Oral. Sci. 14, 36(2022).
PDF

Accesses

Citations

Detail

Sections
Recommended

/