WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling

Qingling Huang1, Yi Xiao2, Ting Lan2, Youguang Lu2,3, Li Huang4, Dali Zheng2

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 7. DOI: 10.1038/s41368-024-00279-y

WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling

  • Qingling Huang1, Yi Xiao2, Ting Lan2, Youguang Lu2,3, Li Huang4, Dali Zheng2
Author information +
History +

Abstract

Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of the Wnt family, remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma (HNSCC). According to the Cancer Genome Atlas (TCGA), transcriptome sequencing data of HNSCC, the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues, which was validated using Real-time RT-PCR and immunohistochemistry. Unexpectedly, overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC. Instead, our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway, leading to enhanced cell proliferation, self-renewal, and resistance to apoptosis. Furthermore, in a patient-derived xenograft (PDX) tumor model, high expression of WNT7A and phosphorylated STAT3 was observed, which positively correlated with tumor progression. These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.

Cite this article

Download citation ▾
Qingling Huang, Yi Xiao, Ting Lan, Youguang Lu, Li Huang, …Dali Zheng. WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling. International Journal of Oral Science, 2024, 16(0): 7 https://doi.org/10.1038/s41368-024-00279-y

References

1. Sung, H., Ferlay, J.& Siegel, R. L. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J. Clin. 71, 41, https://doi.org/10.3322/caac.21660(2021).
2. Bugshan A.& Farooq, I. Oral squamous cell carcinoma: metastasis, potentially associated malignant disorders, etiology and recent advancements in diagnosis. F1000Res. 9, 229, https://doi.org/10.12688/f1000research.22941.1(2020).
3. Steinhart Z.& Angers, S. Wnt signaling in development and tissue homeostasis. Development 145, dev146589, https://doi.org/10.1242/dev.146589(2018).
4. Albrecht, L. V., Tejeda-Muñoz, N. & De Robertis, E. M. Cell biology of canonical wnt signaling. Annu. Rev. Cell Dev. Biol. 37, 369-89, https://doi.org/10.1146/annurev-cellbio-120319-023657 (2021).
5. Rubinfeld B., Robbins P.,El-Gamil, M., Albert, I., Porfiri, E. & Polakis, P. Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 275, 1790-2, https://doi.org/10.1126/science.275.5307.1790(1997).
6. Nusse R.& Clevers, H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169, 985-99, https://doi.org/10.1016/j.cell.2017.05.016(2017).
7. Flores-Hernández,E., Velázquez, D. M. & Castañeda-Patlán, M. C. et al. Canonical and non-canonical Wnt signaling are simultaneously activated by Wnts in colon cancer cells. Cell. Signall. 72, 109636, https://doi.org/10.1016/j.cellsig.2020.109636(2020).
8. Ji, P., Zhou, Y.& Yang, Y. et al. Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/β-catenin signaling. Theranostics 9, 2209-23, https://doi.org/10.7150/thno.30726(2019).
9. Menck, K., Heinrichs, S. & Wlochowitz, D.et al. WNT11/ROR2 signaling is associated with tumor invasion and poor survival in breast cancer. J. Exp. Clin. Cancer Res. 40, 395, https://doi.org/10.1186/s13046-021-02187-z (2021).
10. Erbilgin Y.,Hatirnaz Ng, O. & Can, I. et al. Prognostic evidence of LEF1 isoforms in childhood acute lymphoblastic leukemia. Int. J. Lab. Hematol. 43, 1093-103, https://doi.org/10.1111/ijlh.13513(2021).
11. Xie J., Huang L., Lu Y. G.& Zheng, D. L. Roles of the wnt signaling pathway in head and neck squamous cell carcinoma. Front. Mol. Biosci. 7, 590912, https://doi.org/10.3389/fmolb.2020.590912(2021).
12. MacLean, J. A., King, M. L., Okuda, H. & Hayashi, K. WNT7A regulation by miR-15b in ovarian cancer. PLoS One 11, e0156109, https://doi.org/10.1371/journal.pone.0156109(2016).
13. Liu Y., Qiao Y., Zhang H., Li W.& Zheng, J. Wnt7a, frequently silenced by CpG methylation, inhibits tumor growth and metastasis via suppressing epithelial-mesenchymal transition in gastric cancer. J. Cell Biochem. 120, 18142-51, https://doi.org/10.1002/jcb.29118(2019).
14. Jia, B., Qiu, X.& Chu, H. et al. Wnt7a predicts poor prognosis, and contributes to growth and metastasis in tongue squamous cell carcinoma. Oncol. Rep. 41, 1749-58, https://doi.org/10.3892/or.2019.6974(2019).
15. Xu X., Xu S., Wei, Z. & Li, J. Wnt7a inhibits transformed cell proliferation while promoting migration and invasion in non-small cell lung cancer. Transl. Cancer Res. 9,4666-75, https://doi.org/10.21037/tcr-20-215 (2020).
16. Pohl S. G., Brook N., Agostino M., Arfuso F., Kumar A. P.& Dharmarajan, A. Wnt signaling in triple-negative breast cancer. Oncogenesis 6, e310-e310, https://doi.org/10.1038/oncsis.2017.14(2017).
17. Yu, T. J., Liu, Y. Y. & Li, X. G.et al. PDSS1-mediated activation of CAMK2A-STAT3 signaling promotes metastasis in triple-negative breast cancer. Cancer Res. 81, 5491-505, https://doi.org/10.1158/0008-5472.CAN-21-0747 (2021).
18. Song, K. & Farzaneh, M. Signaling pathways governing breast cancer stem cells behavior. Stem Cell Res. Ther. 12, 245, https://doi.org/10.1186/s13287-021-02321-w (2021).
19. Ota, I., Masui, T.& Kurihara, M. et al. Snail-induced EMT promotes cancer stem cell-like properties in head and neck cancer cells. Oncol. Rep. 35, 261-6, https://doi.org/10.3892/or.2015.4348(2016).
20. Hojo, N., Huisken, A. L. & Wang, H.et al. Snail knockdown reverses stemness and inhibits tumour growth in ovarian cancer. Sci. Rep. 8, 8704, https://doi.org/10.1038/s41598-018-27021-z (2018).
21. Moon, J. H., Lee, S. H.& Koo, B. S. et al. Slug is a novel molecular target for head and neck squamous cell carcinoma stem-like cells. Oral Oncol. 111, 104948, https://doi.org/10.1016/j.oraloncology.2020.104948(2020).
22. Xiang J., Wan C., Guo, R. & Guo, D. Is hydrogen peroxide a suitable apoptosis inducer for all cell types? Biomed. Res. Int.2016, 7343965, https://doi.org/10.1155/2016/7343965 (2016).
23. Clément-Lacroix,P., Ai, M. & Morvan, F. et al. Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc. Natl Acad. Sci. 102, 17406-11, https://doi.org/10.1073/pnas.0505259102(2005).
24. Kanehisa M., Furumichi M., Tanabe M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353-D361, https://doi.org/10.1093/nar/gkw1092 (2017).
25. Gene Ontology Consortium Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049-1056, https://doi.org/10.1093/nar/gku1179 (2015).
26. Keenan, A. B., Torre, D. & Lachmann, A.et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212-W224, https://doi.org/10.1093/nar/gkz446 (2019).
27. Gearing, L. J., Cumming, H. E.& Chapman, R. et al. CiiiDER: a tool for predicting and analysing transcription factor binding sites. PLoS One 14, e0215495, https://doi.org/10.1371/journal.pone.0215495(2019).
28. Lauko, A., Volovetz, J.& Turaga, S. M. et al. SerpinB3 drives cancer stem cell survival in glioblastoma. Cell Rep. 40, 111348, https://doi.org/10.1016/j.celrep.2022.111348(2022).
29. Sun, Y., Sheshadri, N.& Zong, W. X. SERPINB3 and B4: from biochemistry to biology. Semin Cell Dev. Biol. 62, 170-7, https://doi.org/10.1016/j.semcdb.2016.09.005(2017).
30. Yang, F., Liu, X. Q.& He, J. Z. et al. Occludin facilitates tumour angiogenesis in bladder cancer by regulating IL8/STAT3 through STAT4. J. Cell Mol. Med. 26, 2363-76, https://doi.org/10.1111/jcmm.17257(2022).
31. Fu, P. Y., Hu, B.& Ma, X. L. et al. New insight into BIRC3: a novel prognostic indicator and a potential therapeutic target for liver cancer. J. Cell Biochem. 120, 6035-45, https://doi.org/10.1002/jcb.27890(2019).
32. Rho, S. B., Byun, H. J., Kim, B. R. & Lee, C. H. Snail promotes cancer cell proliferation via its interaction with the BIRC3. Biomol. Ther. (Seoul) 30, 380-8, https://doi.org/10.4062/biomolther.2022.063 (2022).
33. Dritsoula A., Dowsett L., Pilotti C., O’Connor M. N., Moss, S. E. & Greenwood, J. Angiopathic activity of LRG1 is induced by the IL-6/STAT3 pathway. Sci. Rep. 12,4867, https://doi.org/10.1038/s41598-022-08516-2 (2022).
34. Guo, H., Xiao, Y. & Yuan, Z.et al. Inhibition of STAT3Y705 phosphorylation by Stattic suppresses proliferation and induces mitochondrial-dependent apoptosis in pancreatic cancer cells. Cell Death Discov. 8, 1-12, https://doi.org/10.1038/s41420-022-00922-9 (2022).
35. Nan, J., Du, Y. & Chen, X.et al. TPCA-1 is a direct dual inhibitor of STAT3 and NF-κB and regresses mutant EGFR-associated human non-small cell lung cancers. Mol. Cancer Ther. 13, 617-29, https://doi.org/10.1158/1535-7163.MCT-13-0464 (2014).
36. Asadi, M., Taghizadeh, S.& Kaviani, E. et al. Caspase-3: structure, function, and biotechnological aspects. Biotechnol. Appl. Biochem. 69, 1633-45, https://doi.org/10.1002/bab.2233(2022).
37. Li C., Dou X., Sun J., Xie M., Li H., Cui P.Wnt7a promotes the occurrence and development of colorectal adenocarcinoma. Front. Oncol. 11. Accessed March 24, 2023.(2021). https://www.frontiersin.org/articles/10.3389/fonc.2021.522899
38. Chen Y., Chen Z., Tang Y.& Xiao, Q. The involvement of noncanonical Wnt signaling in cancers. Biomed. Pharmacother. 133, 110946, https://doi.org/10.1016/j.biopha.2020.110946(2021).
39. Yoshioka, S., King, M. L. & Ran, S.et al. WNT7A regulates tumor growth and progression in ovarian cancer through the WNT/β-Catenin pathway. Mol. Cancer Res. 10, 469-82, https://doi.org/10.1158/1541-7786.MCR-11-0177 (2012).
40. Xie, H., Ma, Y.& Li, J. et al. WNT7A promotes EGF-induced migration of oral squamous cell carcinoma cells by activating β-catenin/MMP9-mediated signaling. Front. Pharmacol. 11, 98, https://doi.org/10.3389/fphar.2020.00098(2020).
41. Schmidt M., Poser C., Janster C.& von Maltzahn, J. The hairpin region of WNT7A is sufficient for binding to the Frizzled7 receptor and to elicit signaling in myogenic cells. Comput. Struct. Biotechnol. J. 20, 6348-59, https://doi.org/10.1016/j.csbj.2022.10.047(2022).
42. von Maltzahn, J., Bentzinger, C. F. & Rudnicki, M. A. Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat. Cell Biol. 14, 186-91, https://doi.org/10.1038/ncb2404 (2011).
43. Carmon K. S.& Loose, D. S. Wnt7a interaction with Fzd5 and detection of signaling activation using a split eGFP. Biochem. Biophys. Res. Commun. 368, 285-91, https://doi.org/10.1016/j.bbrc.2008.01.088(2008).
44. Carmon, K. S. & Loose, D. S. Secreted frizzled-related protein 4 regulates two Wnt7a signaling pathways and inhibits proliferation in endometrial cancer cells. Mol. Cancer Res. 6, 1017-28, https://doi.org/10.1158/1541-7786.MCR-08-0039 (2008).
45. Kim, S. J., Kang, H. G. & Kim, K.et al. Crosstalk between WNT and STAT3 is mediated by galectin-3 in tumor progression. Gastric Cancer 24, 1050-62, https://doi.org/10.1007/s10120-021-01186-5 (2021).
46. Tan, Y., Wang, Z. & Xu, M.et al. Oral squamous cell carcinomas: state of the field and emerging directions. Int. J. Oral Sci. 15, 44, https://doi.org/10.1038/s41368-023-00249-w (2023).
47. Bromberg, J. F., Wrzeszczynska, M. H. & Devgan, G.et al. Stat3 as an oncogene. Cell 98, 295-303, https://doi.org/10.1016/s0092-8674(00)81959-5 (1999).
48. Ma, Jhui, Qin, L. & Li, X. Role of STAT3 signaling pathway in breast cancer. Cell Commun. Signal. 18, 33, https://doi.org/10.1186/s12964-020-0527-z (2020).
49. Wei, S., Li, J.& Tang, M. et al. STAT3 and p63 in the regulation of cancer stemness. Front. Genet. 13, 909251, https://doi.org/10.3389/fgene.2022.909251(2022).
50. Zhang, C., Li, T. & Zhou, C.et al. Parathyroid hormone increases alveolar bone homoeostasis during orthodontic tooth movement in rats with periodontitis via crosstalk between STAT3 and β-catenin. Int. J. Oral. Sci. 12, 38, https://doi.org/10.1038/s41368-020-00104-2 (2020).
51. Geiger, J. L., Grandis, J. R.& Bauman, J. E. The STAT3 pathway as a therapeutic target in head and neck cancer: barriers and innovations. Oral Oncol. 56, 84-92, https://doi.org/10.1016/j.oraloncology.2015.11.022(2016).
52. Zheng, K., Lan, T.& Li, G. P. et al. Evaluated expression of CELSR3 in oral squamous cell carcinoma is associated with perineural invasion and poor prognosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 133, 564-73, https://doi.org/10.1016/j.oooo.2021.10.016(2022).
53. Puram, S. V., Tirosh, I.& Parikh, A. S. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611-24.e24, https://doi.org/10.1016/j.cell.2017.10.044(2017).
PDF

Accesses

Citations

Detail

Sections
Recommended

/