PRX1-positive mesenchymal stem cells drive molar morphogenesis

Xiaoqiao Xu, Xuyan Gong, Lei Zhang, Han Zhang, Yao Sun

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 15. DOI: 10.1038/s41368-024-00277-0

PRX1-positive mesenchymal stem cells drive molar morphogenesis

  • Xiaoqiao Xu, Xuyan Gong, Lei Zhang, Han Zhang, Yao Sun
Author information +
History +

Abstract

Mammalian teeth, developing inseparable from epithelial-mesenchymal interaction, come in many shapes and the key factors governing tooth morphology deserve to be answered. By merging single-cell RNA sequencing analysis with lineage tracing models, we have unearthed a captivating correlation between the contrasting morphology of mouse molars and the specific presence of PRX1+ cells within M1. These PRX1+ cells assume a profound responsibility in shaping tooth morphology through a remarkable divergence in dental mesenchymal cell proliferation. Deeper into the mechanisms, we have discovered that Wnt5a, bestowed by mesenchymal PRX1+ cells, stimulates mesenchymal cell proliferation while orchestrating molar morphogenesis through WNT signaling pathway. The loss of Wnt5a exhibits a defect phenotype similar to that of siPrx1. Exogenous addition of WNT5A can successfully reverse the inhibited cell proliferation and consequent deviant appearance exhibited in Prx1-deficient tooth germs. These findings bestow compelling evidence of PRX1-positive mesenchymal cells to be potential target in regulating tooth morphology.

Cite this article

Download citation ▾
Xiaoqiao Xu, Xuyan Gong, Lei Zhang, Han Zhang, …Yao Sun. PRX1-positive mesenchymal stem cells drive molar morphogenesis. International Journal of Oral Science, 2024, 16(0): 15 https://doi.org/10.1038/s41368-024-00277-0

References

1. Evans A. R., Wilson G. P., Fortelius M.& Jernvall, J. High-level similarity of dentitions in carnivorans and rodents.Nature 445, 78-81 (2007).
2. Blasi, D. E. et al. Human sound systems are shaped by post-Neolithic changes in bite configuration. Science (New York, N.Y.) 363, https://doi.org/10.1126/science.aav3218 (2019).
3. Zhang W.& Yelick, P. C. Tooth repair and regeneration: potential of dental stem cells.Trends Mol. Med. 27, 501-511 (2021).
4. Yu T.& Klein, O. D. Molecular and cellular mechanisms of tooth development, homeostasis and repair. Development (Cambridge, England) 147, https://doi.org/10.1242/dev.184754(2020).
5. Jernvall, J. & Thesleff, I. Tooth shape formation and tooth renewal: evolving with the same signals. Dev. (Camb., Engl.) 139, 3487-3497 (2012).
6. Thesleff I.Epithelial-mesenchymal signalling regulating tooth morphogenesis.J. Cell Sci. 116, 1647-1648 (2003).
7. Lan, Y., Jia, S. & Jiang, R. Molecular patterning of the mammalian dentition. Semin. Cell Dev. Biol. 25-26, 61-70 (2014).
8. Li P., Gong Z., Shultz L. D.& Ren, G. Mesenchymal stem cells: from regeneration to cancer.Pharmacol. Ther. 200, 42-54 (2019).
9. Zhang Y. D., Chen Z., Song Y. Q., Liu C.& Chen, Y. P. Making a tooth: growth factors, transcription factors, and stem cells.Cell Res. 15, 301-316 (2005).
10. Lumsden, A. G. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Dev. (Camb., Engl.) 103, 155-169 (1988).
11. Shi, X., Mao, J.& Liu, Y. Pulp stem cells derived from human permanent and deciduous teeth: Biological characteristics and therapeutic applications.Stem Cells Transl. Med. 9, 445-464 (2020).
12. Jing, J.et al.Spatiotemporal single-cell regulatory atlas reveals neural crest lineage diversification and cellular function during tooth morphogenesis.Nat. Commun. 13, 4803(2022).
13. Feldmann, K.et al. Mesenchymal plasticity regulated by Prrx1 drives aggressive pancreatic cancer biology. Gastroenterology 160, 346-361.e324 (2021).
14. Jiang, W. D.et al. PRRX1(+)MSCs enhance mandibular regeneration during distraction osteogenesis. J. Dental Res. 220345231176522 (2023).
15. ten Berge, D. et al. Prx1 and Prx2 are upstream regulators of sonic hedgehog and control cell proliferation during mandibular arch morphogenesis. Dev. (Camb., Engl.) 128, 2929-2938 (2001).
16. Mitchell, J. M.et al.The Prx1 homeobox gene is critical for molar tooth morphogenesis.J. Dent. Res. 85, 888-893 (2006).
17. Gong, X.et al.Tracing PRX1(+) cells during molar formation and periodontal ligament reconstruction.Int. J. Oral. Sci. 14, 5(2022).
18. Krivanek, J.et al.Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth.Nat. Commun. 11, 4816(2020).
19. Krivanek J., Buchtova M., Fried K.& Adameyko, I. Plasticity of dental cell types in development, regeneration, and evolution.J. Dent. Res. 102, 589-598 (2023).
20. Wagner D. E.& Klein, A. M. Lineage tracing meets single-cell omics: opportunities and challenges.Nat. Rev. Genet. 21, 410-427 (2020).
21. Chan, L.et al.Loss of Stat3 in Osterix(+) cells impairs dental hard tissues development.Cell Biosci. 13, 75(2023).
22. Nakao, K.et al.The development of a bioengineered organ germ method.Nat. Methods 4, 227-230 (2007).
23. Han, X.et al.Mouse embryonic tooth germ dissection and ex vivo culture protocol.Bio-Protoc. 10, e3515(2020).
24. Zhu, X.et al.Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis.J. Biol. Chem. 288, 12080-12089 (2013).
25. Järvinen E.,Shimomura-Kuroki, J., Balic, A., Jussila, M. & Thesleff, I. Mesenchymal Wnt/β-catenin signaling limits tooth number. Development (Cambridge, England) 145, https://doi.org/10.1242/dev.158048(2018).
26. Sarkar L.& Sharpe, P. T. Expression of Wnt signalling pathway genes during tooth development.Mech. Dev. 85, 197-200 (1999).
27. Li, R.et al.Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration.Sci. Adv. 5, eaaw3896 (2019).
28. Couzens A. M.C., Sears, K. E. & Rücklin, M. Developmental influence on evolutionary rates and the origin of placental mammal tooth complexity. Proc. Natl Acad Sci USA 118, https://doi.org/10.1073/pnas.2019294118(2021).
29. Thiery, A. P., Standing, A. S.I., Cooper, R. L. & Fraser, G. J. An epithelial signalling centre in sharks supports homology of tooth morphogenesis in vertebrates. eLife 11, https://doi.org/10.7554/eLife.73173(2022).
30. Kassai, Y. et al. Regulation of mammalian tooth cusp patterning by ectodin. Sci. (N. Y., N. Y.) 309, 2067-2070 (2005).
31. Jussila M.& Thesleff, I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages.Cold Spring Harb. Perspect. Biol. 4, a008425(2012).
32. Pantalacci, S.et al.Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology.Genome Biol. 18, 29(2017).
33. Hu, H.et al.Dental niche cells directly contribute to tooth reconstitution and morphogenesis.Cell Rep. 41, 111737(2022).
34. Bragdon B. C., Bennie A., Molinelli A., Liu Y.& Gerstenfeld, L. C. Post natal expression of Prx1 labels appendicular restricted progenitor cell populations of multiple tissues.J. Cell. Physiol. 237, 2550-2560 (2022).
35. Cui, C.et al.Role of PTH1R signaling in Prx1(+) mesenchymal progenitors during eruption.J. Dent. Res. 99, 1296-1305 (2020).
36. Manning L. A.& Peifer, M. Getting into shape: tissue tension drives oriented cell divisions during organogenesis. EMBO J 38, https://doi.org/10.15252/embj.2018101246(2019).
37. Kim, E. J.et al.Cuspal shape alterations by Bmp4 directing cell proliferation and apoptosis.J. Dent. Res. 102, 825-834 (2023).
38. Marin-Riera, M., Moustakas-Verho, J., Savriama, Y., Jernvall, J. & Salazar-Ciudad, I. Differential tissue growth and cell adhesion alone drive early tooth morphogenesis: an ex vivo and in silico study.PLoS Comput. Biol. 14, e1005981(2018).
39. Liu Z., Chen T., Bai D., Tian W.& Chen, Y. Smad7 regulates dental epithelial proliferation during tooth development.J. Dent. Res. 98, 1376-1385 (2019).
40. Han, X.et al.The transcription factor NKX2-3 mediates p21 expression and ectodysplasin—a signaling in the enamel knot for cusp formation in tooth development.J. Biol. Chem. 293, 14572-14584 (2018).
41. Wang, S., Garcia-Ojalvo, J. & Elowitz, M. B. Periodic spatial patterning with a single morphogen. Cell Syst. 13, 1033-1047.e1037 (2022).
42. Shilo B. Z.& Barkai, N. Buffering global variability of morphogen gradients.Dev. Cell 40, 429-438 (2017).
43. Fane, M. E.et al.Stromal changes in the aged lung induce an emergence from melanoma dormancy.Nature 606, 396-405 (2022).
44. Awan, S.et al.Wnt5a promotes lysosomal cholesterol egress and protects against atherosclerosis.Circ. Res. 130, 184-199 (2022).
45. Thorup, A. S.et al. ROR2 blockade as a therapy for osteoarthritis. Sci. Transl. Med. 12, https://doi.org/10.1126/scitranslmed.aax3063 (2020).
46. Lin, M.et al.Wnt5a regulates growth, patterning, and odontoblast differentiation of developing mouse tooth.Dev. Dyn. Off. Publ. Am. Assoc. Anat. 240, 432-440 (2011).
47. Cai, J.et al.Wnt5a plays a crucial role in determining tooth size during murine tooth development.Cell Tissue Res. 345, 367-377 (2011).
48. Jing, J.et al.Reciprocal interaction between mesenchymal stem cells and transit amplifying cells regulates tissue homeostasis. eLife 10, https://doi.org/10.7554/eLife.59459(2021).
49. Kim, R.et al.Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development. Development (Cambridge, England) 148, https://doi.org/10.1242/dev.199685(2021).
50. Blanpain, C., Horsley, V.& Fuchs, E. Epithelial stem cells: turning over new leaves.Cell 128, 445-458 (2007).
PDF

Accesses

Citations

Detail

Sections
Recommended

/