RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification

Xiaochen Wang1, Rongsong Ling2, Yurong Peng1, Weiqiong Qiu1, Demeng Chen1

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 6. DOI: 10.1038/s41368-023-00276-7
ARTICLE

RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification

  • Xiaochen Wang1, Rongsong Ling2, Yurong Peng1, Weiqiong Qiu1, Demeng Chen1
Author information +
History +

Abstract

Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.

Cite this article

Download citation ▾
Xiaochen Wang, Rongsong Ling, Yurong Peng, Weiqiong Qiu, …Demeng Chen. RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification. International Journal of Oral Science, 2024, 16(0): 6 https://doi.org/10.1038/s41368-023-00276-7

References

1. von Witzleben A., Wang C., Laban S., Savelyeva, N. & Ottensmeier, C. H. HNSCC: Tumour antigens and their targeting by immunotherapy. Cells https://doi.org/10.3390/cells9092103 (2020).
2. Johnson, D. E.et al.Head and neck squamous cell carcinoma.Nat. Rev. Dis. Primers 6, 92(2020).
3. Siegel R. L., Miller K. D., Fuchs H. E.& Jemal, A. Cancer statistics, 2021.CA Cancer J. Clin. 71, 7-33 (2021).
4. Liu, L.et al.METTL3 promotes tumorigenesis and metastasis through BMI1 m(6)A methylation in oral squamous cell carcinoma.Mol. Ther. 28, 2177-2190 (2020).
5. Jin, S.et al.The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKepsilon/TBK1/IRF3 pathway in head and neck squamous cell carcinoma.Mol. Cancer 21, 97(2022).
6. Chen, J.et al.Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression.Cancer Commun. 42, 223-244 (2022).
7. Li, K.et al. The CTBP2-PCIF1 complex regulates m6Am modification of mRNA in head and neck squamous cell carcinoma. J. Clin. Invest. https://doi.org/10.1172/JCI170173 (2023).
8. Jin G., Xu M., Zou M.& Duan, S. The processing, gene regulation, biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic review.Mol. Ther. Nucleic Acids 20, 13-24 (2020).
9. Xie, L.et al.Mechanisms of NAT10 as ac4C writer in diseases.Mol. Ther. Nucleic Acids 32, 359-368 (2023).
10. Sas-Chen, A. et al. Dynamic RNA acetylation revealed by quantitative cross-evolutionary mapping.Nature 583, 638-643 (2020).
11. Deka B.& Singh, K. K. Molecular cloning, expression and generation of a polyclonal antibody specific for RNPS1.Mol. Biol. Rep. 49, 9095-9100 (2022).
12. Zhong, X.et al.RNPS1 inhibits excessive tumor necrosis factor/tumor necrosis factor receptor signaling to support hematopoiesis in mice.Proc. Natl Acad. Sci. USA 119, e2200128119(2022).
13. Mayeda, A.et al.Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing.EMBO J. 18, 4560-4570 (1999).
14. Dalhat, M. H.et al.NAT10: an RNA cytidine transferase regulates fatty acid metabolism in cancer cells.Clin. Transl. Med. 12, e1045(2022).
15. Shang, X.et al.Profile analysis of N4-acetylcytidine (ac4C) on mRNA of human lung adenocarcinoma and paired adjacent non-tumor tissues.Biochim. Biophys. Acta Gen. Subj. 1867, 130498(2023).
16. Yan, Q.et al.NAT10-dependent N(4)-acetylcytidine modification mediates PAN RNA stability, KSHV reactivation, and IFI16-related inflammasome activation.Nat. Commun. 14, 6327(2023).
17. Yan, S.et al.Antibody-free fluorine-assisted metabolic sequencing of RNA N(4)-acetylcytidine.J. Am. Chem. Soc. 145, 22232-22242 (2023).
18. Proudfoot, A. T., Bradberry, S. M.& Vale, J. A. Sodium fluoroacetate poisoning.Toxicol. Rev. 25, 213-219 (2006).
19. Schimmel P.The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis.Nat. Rev. Mol. Cell Biol. 19, 45-58 (2018).
20. Wei, W.et al.NAT10-mediated ac4C tRNA modification promotes EGFR mRNA translation and gefitinib resistance in cancer.Cell Rep. 42, 112810(2023).
21. Wang, G.et al.NAT10-mediated mRNA N4-acetylcytidine modification promotes bladder cancer progression.Clin. Transl. Med. 12, e738(2022).
22. Palmer, E. E.et al.A recurrent De Novo nonsense variant in ZSWIM6 results in severe intellectual disability without frontonasal or limb malformations.Am. J. Hum. Genet. 101, 995-1005 (2017).
23. Tischfield, D. J.et al.Loss of the neurodevelopmental gene Zswim6 alters striatal morphology and motor regulation.Neurobiol. Dis. 103, 174-183 (2017).
24. Liu, X.et al.NAT10 regulates p53 activation through acetylating p53 at K120 and ubiquitinating Mdm2.EMBO Rep. 17, 349-366 (2016).
25. Li, Q.et al.NAT10 is upregulated in hepatocellular carcinoma and enhances mutant p53 activity.BMC Cancer 17, 605(2017).
26. Dominissini D.& Rechavi, G. N(4)-acetylation of cytidine in mRNA by NAT10 regulates stability and translation.Cell 175, 1725-1727 (2018).
27. Kotelawala, L., Grayhack, E. J.& Phizicky, E. M. Identification of yeast tRNA Um(44) 2’-O-methyltransferase (Trm44) and demonstration of a Trm44 role in sustaining levels of specific tRNA(Ser) species.RNA 14, 158-169 (2008).
28. Thalalla Gamage, S., Sas-Chen, A., Schwartz, S. & Meier, J. L. Quantitative nucleotide resolution profiling of RNA cytidine acetylation by ac4C-seq.Nat. Protoc. 16, 2286-2307 (2021).
29. Vienne, A.et al.Efficacy of second-line chemotherapy or immune checkpoint inhibitors for patients with a prolonged objective response (≥6 months) after first-line therapy for recurrent or metastatic head and neck squamous cell carcinoma: a retrospective study.BMC Cancer 23, 663(2023).
30. Elmusrati, A., Wang, J.& Wang, C. Y. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma.Int. J. Oral Sci. 13, 24(2021).
31. Tan, Y.et al.Oral squamous cell carcinomas: state of the field and emerging directions.Int. J. Oral Sci. 15, 44(2023).
32. Babaian, A.et al.Loss of m(1)acp(3)Psi Ribosomal RNA modification is a major feature of cancer.Cell Rep. 31, 107611(2020).
33. Nombela P.,Miguel-Lopez, B. & Blanco, S. The role of m(6)A, m(5)C and Psi RNA modifications in cancer: novel therapeutic opportunities.Mol. Cancer 20, 18(2021).
34. Yi L., Wu G., Guo L., Zou X.& Huang, P. Comprehensive analysis of the PD-L1 and immune infiltrates of m(6)A RNA methylation regulators in head and neck squamous cell carcinoma.Mol. Ther. Nucleic Acids 21, 299-314 (2020).
35. Bhat, M.et al.Targeting the translation machinery in cancer.Nat. Rev. Drug Discov. 14, 261-278 (2015).
36. Thomas, J. M.et al.A chemical signature for cytidine acetylation in RNA.J. Am. Chem. Soc. 140, 12667-12670 (2018).
37. Martinez Campos, C. et al. Mapping of pseudouridine residues on cellular and viral transcripts using a novel antibody-based technique.RNA 27, 1400-1411 (2021).
38. Kawai G., Hashizume T., Miyazawa T., McCloskey, J. A. & Yokoyama, S. Conformational characteristics of 4-acetylcytidine found in tRNA.Nucleic Acids Symp. Ser. 21, 61-62 (1989).
39. Dai, Z.et al. N(7)-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol. Cell 81, 3339-3355.e8 (2021).
40. Ma, J.et al.METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression.Mol. Ther. 29, 3422-3435 (2021).
41. Xu, Q.et al.The interaction of interleukin-8 and PTEN inactivation promotes the malignant progression of head and neck squamous cell carcinoma via the STAT3 pathway.Cell Death Dis. 11, 405(2020).
42. Karakasheva, T. A.et al.IL-6 mediates cross-talk between tumor cells and activated fibroblasts in the tumor microenvironment.Cancer Res. 78, 4957-4970 (2018).
43. Georganas, C.et al.Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kappa B but not C/EBP beta or c-Jun.J. Immunol. 165, 7199-7206 (2000).
44. Chen, D.et al.Targeting BMI1(+) cancer stem cells overcomes chemoresistance and inhibits metastases in squamous cell carcinoma.Cell Stem Cell 20, 621-634 e626(2017).
45. Schmidt E. K., Clavarino G., Ceppi M.& Pierre, P. SUnSET, a nonradioactive method to monitor protein synthesis.Nat. Methods 6, 275-277 (2009).
46. Liu, Q.et al.Small noncoding RNA discovery and profiling with sRNAtools based on high-throughput sequencing.Brief. Bioinform. 22, 463-473 (2021).
47. Langmead B., Trapnell C., Pop M.& Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.Genome Biol. 10, R25(2009).
48. Anders S.& Huber, W. Differential expression analysis for sequence count data.Genome Biol. 11, R106(2010).
49. Dobin, A.et al.STAR: ultrafast universal RNA-seq aligner.Bioinformatics 29, 15-21 (2013).
PDF

Accesses

Citations

Detail

Sections
Recommended

/