A novel saliva-based miRNA profile to diagnose and predict oral cancer

Jaikrishna Balakittnen1,2, Chameera Ekanayake Weeramange1,3, Daniel F. Wallace4, Pascal H. G. Duijf5,6,7, Alexandre S. Cristino8, Gunter Hartel9,10,11, Roberto A. Barrero12, Touraj Taheri13,14, Liz Kenny14,15, Sarju Vasani1,15,16, Martin Batstone17, Omar Breik15,17, Chamindie Punyadeera1,3

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 14. DOI: 10.1038/s41368-023-00273-w

A novel saliva-based miRNA profile to diagnose and predict oral cancer

  • Jaikrishna Balakittnen1,2, Chameera Ekanayake Weeramange1,3, Daniel F. Wallace4, Pascal H. G. Duijf5,6,7, Alexandre S. Cristino8, Gunter Hartel9,10,11, Roberto A. Barrero12, Touraj Taheri13,14, Liz Kenny14,15, Sarju Vasani1,15,16, Martin Batstone17, Omar Breik15,17, Chamindie Punyadeera1,3
Author information +
History +

Abstract

Oral cancer (OC) is the most common form of head and neck cancer. Despite the high incidence and unfavourable patient outcomes, currently, there are no biomarkers for the early detection of OC. This study aims to discover, develop, and validate a novel saliva-based microRNA signature for early diagnosis and prediction of OC risk in oral potentially malignant disorders (OPMD). The Cancer Genome Atlas (TCGA) miRNA sequencing data and small RNA sequencing data of saliva samples were used to discover differentially expressed miRNAs. Identified miRNAs were validated in saliva samples of OC (n = 50), OPMD (n = 52), and controls (n = 60) using quantitative real-time PCR. Eight differentially expressed miRNAs (miR-7-5p, miR-10b-5p, miR-182-5p, miR-215-5p, miR-431-5p, miR-486-3p, miR-3614-5p, and miR-4707-3p) were identified in the discovery phase and were validated. The efficiency of our eight-miRNA signature to discriminate OC and controls was: area under curve (AUC): 0.954, sensitivity: 86%, specificity: 90%, positive predictive value (PPV): 87.8% and negative predictive value (NPV): 88.5% whereas between OC and OPMD was: AUC: 0.911, sensitivity: 90%, specificity: 82.7%, PPV: 74.2% and NPV: 89.6%. We have developed a risk probability score to predict the presence or risk of OC in OPMD patients. We established a salivary miRNA signature that can aid in diagnosing and predicting OC, revolutionising the management of patients with OPMD. Together, our results shed new light on the management of OC by salivary miRNAs to the clinical utility of using miRNAs derived from saliva samples.

Cite this article

Download citation ▾
Jaikrishna Balakittnen, Chameera Ekanayake Weeramange, Daniel F. Wallace, Pascal H. G. Duijf, Alexandre S. Cristino, Gunter Hartel, Roberto A. Barrero, Touraj Taheri, Liz Kenny, Sarju Vasani, Martin Batstone, Omar Breik, Chamindie Punyadeera. A novel saliva-based miRNA profile to diagnose and predict oral cancer. International Journal of Oral Science, 2024, 16(0): 14 https://doi.org/10.1038/s41368-023-00273-w

References

1. Thavarool, S. B.et al. Improved survival among oral cancer patients: findings from a retrospective study at a tertiary care cancer centre in rural Kerala, India. World J. Surg. Oncol. 17, https://doi.org/10.1186/s12957-018-1550-z (2019).
2. Baykul, T.et al.Early diagnosis of oral cancer.J. Int. Med. Res. 38, 737-749 (2010).
3. Gurizzan, C.et al.Immunotherapy for the prevention of high-risk oral disorders malignant transformation: the IMPEDE trial.BMC Cancer 21, 561(2021).
4. Warnakulasuriya S.Clinical features and presentation of oral potentially malignant disorders.Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. 125, 582-590 (2018).
5. Su, Y. F. et al. Current Insights into Oral Cancer Diagnostics. Diagnostics (Basel) 11, https://doi.org/10.3390/diagnostics11071287 (2021).
6. Walsh, T.et al.Diagnostic tests for oral cancer and potentially malignant disorders in patients presenting with clinically evident lesions.Cochrane Database Syst Rev. 29, CD010276 (2015).
7. Balakittnen, J.et al.Noncoding RNAs in oral cancer.Wiley Interdiscip. Rev. RNA 14, e1754(2022).
8. Satapathy S., Batra J., Jeet V., Thompson E. W.& Punyadeera, C. MicroRNAs in HPV associated cancers: small players with big consequences.Expert Rev. Mol. Diagn. 17, 711-722 (2017).
9. Ortiz-Quintero, B. Extracellular microRNAs as intercellular mediators and noninvasive biomarkers of Cancer. Cancers (Basel) 12, https://doi.org/10.3390/cancers12113455 (2020).
10. Chen, X.et al.Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases.Cell Res. 18, 997-1006 (2008).
11. Lorena Q.& Francesca, O. The power of microRNAs as diagnostic and prognostic biomarkers in liquid biopsies.Cancer Drug Resistance 3, 117-139 (2020).
12. Glinge, C.et al.Stability of circulating blood-based microRNAs-pre-analytic methodological considerations.PLoS One 12, e0167969(2017).
13. Kevadiya, B. D.et al.Diagnostics for SARS-CoV-2 infections.Nat Mater. 20, 593-605 (2021).
14. Punyadeera, C. & Slowey, P. D. in Nanobiomaterials in Clinical Dentistry (Second Edition) (eds Karthikeyan S. & Waqar A.) 543-565 (Elsevier, 2019).
15. Song, X.et al.Oral squamous cell carcinoma diagnosed from saliva metabolic profiling.Proc. Natl Acad. Sci. USA 117, 16167-16173 (2020).
16. Rapado-González, Ó. et al. Human salivary microRNAs in Cancer.J. Cancer 9, 638-649 (2018).
17. Romani, C.et al.Genome-wide study of salivary miRNAs identifies miR-423-5p as promising diagnostic and prognostic biomarker in oral squamous cell carcinoma.Theranostics 11, 2987-2999 (2021).
18. Salazar, C.et al.A novel saliva-based microRNA biomarker panel to detect head and neck cancers.Cell. Oncol. 37, 331-338 (2014).
19. Bustin, S. A.et al.The MIQE Guidelines: minimum information for publication of quantitative real-time PCR experiments.Clin. Chem. 55, 611-622 (2009).
20. Bouaoud, J.et al.Unmet needs and perspectives in oral cancer prevention.Cancers 14, 1815(2022).
21. Al-Dakkak, I. Oral dysplasia and risk of progression to cancer.Evid. Based Dent. 11, 91-92 (2010).
22. Koopaie, M., Manifar, S.& Lahiji, S. S. Assessment of microRNA-15a and microRNA-16-1 salivary level in oral squamous cell carcinoma patients.Microrna 10, 74-79 (2021).
23. Duz, M. B. et al. Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell Oncol. (Dordr.) 39, 187-193 (2016).
24. Yap, T.et al.Non-invasive screening of a microRNA-based dysregulation signature in oral cancer and oral potentially malignant disorders.Oral. Oncol. 96, 113-120 (2019).
25. Chou, S. T.et al.MicroRNA-486-3p functions as a tumor suppressor in oral cancer by targeting DDR1.J. Exp. Clin. Cancer Res. 38, 281(2019).
26. Li, N.et al.miR-182-5p promotes growth in oral squamous cell carcinoma by inhibiting CAMK2N1.Cell Physiol. Biochem. 49, 1329-1341 (2018).
27. Hu, Y. T., Li, X. X.& Zeng, L. W. Circ_0001742 promotes tongue squamous cell carcinoma progression via miR-431-5p/ATF3 axis.Eur. Rev. Med Pharm. Sci. 23, 10300-10312 (2019).
28. Rupaimoole R., Calin G. A., Lopez-Berestein, G. & Sood, A. K. miRNA deregulation in cancer cells and the tumor microenvironment.Cancer Discov. 6, 235-246 (2016).
29. Jia, B.et al.MiR-7-5p suppresses stemness and enhances temozolomide sensitivity of drug-resistant glioblastoma cells by targeting Yin Yang 1.Exp. Cell Res. 375, 73-81 (2019).
30. Wang, Y.et al.hsa-miR-7-5p suppresses proliferation, migration and promotes apoptosis in hepatocellular carcinoma cell lines by inhibiting SPC24 expression.Biochem. Biophys. Res. Commun. 561, 80-87 (2021).
31. Xiao H.MiR-7-5p suppresses tumor metastasis of non-small cell lung cancer by targeting NOVA2.Cell Mol. Biol. Lett. 24, 60(2019).
32. Zhu W., Wang Y., Zhang D., Yu X.& Leng, X. MiR-7-5p functions as a tumor suppressor by targeting SOX18 in pancreatic ductal adenocarcinoma.Biochem. Biophys. Res Commun. 497, 963-970 (2018).
33. Liu S., Zhang Y., Huang C.& Lin, S. miR-215-5p is an anticancer gene in multiple myeloma by targeting RUNX1 and deactivating the PI3K/AKT/mTOR pathway.J. Cell Biochem. 121, 1475-1490 (2020).
34. Monterde-Cruz, L. et al. Circulating miR-215-5p and miR-642a-5p as potential biomarker for diagnosis of osteosarcoma in Mexican population.Hum. Cell 31, 292-299 (2018).
35. Wu C. L., Xu L. L., Peng, J. & Zhang, D. H. Al-MPS Obstructs EMT in Breast Cancer by Inhibiting Lipid Metabolism via miR-215-5p/SREBP1. Endocrinology 163, https://doi.org/10.1210/endocr/bqac040 (2022).
36. Feng, Z.et al.Study on the mechanism of LOXL1-AS1/miR-3614-5p/YY1 signal axis in the malignant phenotype regulation of hepatocellular carcinoma.Biol. Direct 16, 24(2021).
37. Li, F.et al.PGAM1, regulated by miR-3614-5p, functions as an oncogene by activating transforming growth factor-β (TGF-β) signaling in the progression of non-small cell lung carcinoma.Cell Death Dis. 11, 710(2020).
38. Yue, Y.et al.miR-3614-5p downregulation promotes cadmium-induced breast cancer cell proliferation and metastasis by targeting TXNRD1.Ecotoxicol. Environ. Saf. 247, 114270(2022).
39. Bi, Y.et al.Decreased ZNF750 promotes angiogenesis in a paracrine manner via activating DANCR/miR-4707-3p/FOXC2 axis in esophageal squamous cell carcinoma.Cell Death Dis. 11, 296(2020).
40. Chen X.& Chen, J. miR-10b-5p-mediated upregulation of PIEZO1 predicts poor prognosis and links to purine metabolism in breast cancer.Genomics 114, 110351(2022).
41. Niu, X.et al.miR-10b-5p suppresses the proliferation and invasion of primary hepatic carcinoma cells by downregulating EphA2.Biomed. Res. Int. 2021, 1382061(2021).
42. Wan, Y.et al. Salivary miRNA panel to detect HPV-positive and HPV-negative head and neck cancer patients. Oncotarget 8 (2017).
43. Tang K.-W.,Alaei-Mahabadi, B., Samuelsson, T., Lindh, M. & Larsson, E. The landscape of viral expression and host gene fusion and adaptation in human cancer.Nat. Commun. 4, 2513(2013).
44. Li Y., Ge X., Peng F., Li W.& Li, J. J. Exaggerated false positives by popular differential expression methods when analyzing human population samples.Genome Biol. 23, 79(2022).
45. He, Z.et al.Integrated analysis of mRNA-Seq and MiRNA-seq reveals the molecular mechanism of the intestinal immune response inMarsupenaeus japonicus under decapod iridescent virus 1 infection. Front. Immunol. 12, 807093(2021).
46. Kozomara, A., Birgaoanu, M.& Griffiths-Jones, S. miRBase: from microRNA sequences to function.Nucleic Acids Res. 47, D155-d162 (2019).
47. Langmead B., Trapnell C., Pop M.& Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome.Genome Biol. 10, R25(2009).
48. Li, H.et al.The sequence alignment/map format and SAMtools.Bioinformatics 25, 2078-2079 (2009).
49. Robinson M. D.,McCarthy, D. J. & Smyth, G. K. edgeR: a bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics 26, 139-140 (2010).
50. Ekanayake Weeramange,C. et al. Salivary micro RNAs as biomarkers for oropharyngeal cancer. Cancer Med. https://doi.org/10.1002/cam4.6185(2023).
51. Andersen, C. L., Jensen, J. L.& Ørntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets.Cancer Res. 64, 5245-5250 (2004).
52. Erener, S.et al.Deletion of pancreas-specific miR-216a reduces beta-cell mass and inhibits pancreatic cancer progression in mice.Cell Rep. Med. 2, 100434(2021).
PDF

Accesses

Citations

Detail

Sections
Recommended

/