Magnesium promotes vascularization and osseointegration in diabetic states

Linfeng Liu1, Feiyu Wang1, Wei Song1, Danting Zhang1, Weimin Lin1, Qi Yin1, Qian Wang1, Hanwen Li1, Quan Yuan1,2, Shiwen Zhang1,2

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 10. DOI: 10.1038/s41368-023-00271-y
ARTICLE

Magnesium promotes vascularization and osseointegration in diabetic states

  • Linfeng Liu1, Feiyu Wang1, Wei Song1, Danting Zhang1, Weimin Lin1, Qi Yin1, Qian Wang1, Hanwen Li1, Quan Yuan1,2, Shiwen Zhang1,2
Author information +
History +

Abstract

Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.

Cite this article

Download citation ▾
Linfeng Liu, Feiyu Wang, Wei Song, Danting Zhang, Weimin Lin, Qi Yin, Qian Wang, Hanwen Li, Quan Yuan, …Shiwen Zhang. Magnesium promotes vascularization and osseointegration in diabetic states. International Journal of Oral Science, 2024, 16(0): 10 https://doi.org/10.1038/s41368-023-00271-y

References

1. Buser, D., Sennerby, L.& De Bruyn, H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions.Periodontology 73, 7-21 (2017).
2. De Angelis, F. et al. Implant survival and success rates in patients with risk factors: results from a long-term retrospective study with a 10 to 18 years follow-up.Rev. Med. Pharmacol. Sci. 21, 433-437 (2017).
3. de Oliveira, P.et al. Obesity/metabolic syndrome and diabetes mellitus on peri-implantitis.Trends Endocrinol. Metab. 31, 596-610 (2020).
4. Javed F.& Romanos, G. E. Chronic hyperglycemia as a risk factor in implant therapy.Periodontology 81, 57-63 (2019).
5. Quan, Y. (ed.) Dental Implant Treatment in Medically Compromised Patients. (Springer Press, 2020).
6. Ko, K. I., Sculean, A.& Graves, D. T. Diabetic wound healing in soft and hard oral tissues.Transl. Res.: J. Lab. Clin. Med. 236, 72-86 (2021).
7. Claes, L., Recknagel, S.& Ignatius, A. Fracture healing under healthy and inflammatory conditions.Nat. Rev. Rheumatol. 8, 133-143 (2012).
8. Stegen S., van Gastel, N. & Carmeliet, G. Bringing new life to damaged bone: the importance of angiogenesis in bone repair and regeneration.Bone 70, 19-27 (2015).
9. Tuckermann J.& Adams, R. H. The endothelium-bone axis in development, homeostasis and bone and joint disease.Nat. Rev. Rheumatol. 17, 608-620 (2021).
10. Hu X. F., Wang L., Xiang G., Lei W.& Feng, Y. F. Angiogenesis impairment by the NADPH oxidase-triggered oxidative stress at the bone-implant interface: Critical mechanisms and therapeutic targets for implant failure under hyperglycemic conditions in diabetes.Acta Biomater. 73, 470-487 (2018).
11. Beckman J. A.& Creager, M. A. Vascular complications of diabetes.Circul. Res. 118, 1771-1785 (2016).
12. Xu, Z.et al.Thermosensitive hydrogel incorporating Prussian blue nanoparticles promotes diabetic wound healing via ROS scavenging and mitochondrial function restoration.ACS Appl. Mater. Interfaces 14, 14059-14071 (2022).
13. de Baaij, J. H., Hoenderop, J. G. & Bindels, R. J. Magnesium in man: implications for health and disease.Physiol. Rev. 95, 1-46 (2015).
14. Zhang, Y.et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats.Nat. Med. 22, 1160-1169 (2016).
15. Lin, S. et al. A magnesium-enriched 3D culture system that mimics the bone development microenvironment for vascularized bone regeneration. Adv. Sci. (Weinh.) 6, 1900209 (2019).
16. Han, H. S. et al. Biodegradable magnesium alloys promote angio-osteogenesis to enhance bone repair. Adv. Sci. (Weinh.) 7, 2000800 (2020).
17. Zhu, D., You, J., Zhao, N. & Xu, H. Magnesium regulates endothelial barrier functions through TRPM7, MagT1, and S1P1. Adv. Sci. (Weinh.) 6, 1901166 (2019).
18. Yin, M.et al.Multifunctional magnesium organic framework-based microneedle patch for accelerating diabetic wound healing.ACS Nano 15, 17842-17853 (2021).
19. Sales C. H.& Pedrosa Lde, F. Magnesium and diabetes mellitus: their relation.Clin. Nutrition (Edinburgh, Scotland) 25, 554-562 (2006).
20. WA E. L., Naser I. A., Taleb M. H.& Abutair, A. S. The effects of oral magnesium supplementation on glycemic response among type 2 diabetes patients.Nutrients 11, 44(2018).
21. Veronese, N.et al.Oral magnesium supplementation for treating glucose metabolism parameters in people with or at risk of diabetes: a systematic review and meta-analysis of double-blind randomized controlled trials.Nutrients 13, 4074(2021).
22. He, T.et al.A comparison of micro-CT and histomorphometry for evaluation of osseointegration of PEO-coated titanium implants in a rat model.Sci. Rep. 7, 16270(2017).
23. Calvo-Guirado, J. L. et al. Histological and histomorphometric evaluation of immediate implant placement on a dog model with a new implant surface treatment.Clin. Oral Implants Res. 21, 308-315 (2010).
24. Jing, D.et al.Tissue clearing and its application to bone and dental tissues.J. Dental Res. 98, 621-631 (2019).
25. Jing, D.et al.Tissue clearing of both hard and soft tissue organs with the PEGASOS method.Cell Res. 28, 803-818 (2018).
26. Sivaraj K. K.& Adams, R. H. Blood vessel formation and function in bone.Development (Cambridge, England) 143, 2706-2715 (2016).
27. Lin, W.et al.Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution.Bone Res. 9, 17(2021).
28. Kusumbe, A. P., Ramasamy, S. K.& Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone.Nature 507, 323-328 (2014).
29. Peng Y., Wu S., Li Y.& Crane, J. L. Type H blood vessels in bone modeling and remodeling.Theranostics 10, 426-436 (2020).
30. Brem H.& Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes.J. Clin. Investig. 117, 1219-1222 (2007).
31. Orasanu G.& Plutzky, J. The pathologic continuum of diabetic vascular disease.J. Am. College Cardiol. 53, S35-S42 (2009).
32. Devlin, H., Garland, H.& Sloan, P. Healing of tooth extraction sockets in experimental diabetes mellitus.J. Oral Maxillofac. Surg. 54, 1087-1091 (1996).
33. Xiong, Y. et al. A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing. Adv. Mater. (Deerfield Beach, Fla.), e2212300, https://doi.org/10.1002/adma.202212300 (2023).
34. Rohlenova K., Veys K., Miranda-Santos, I., De Bock, K. & Carmeliet, P. Endothelial cell metabolism in health and disease.Trends Cell Biol. 28, 224-236 (2018).
35. Potente, M., Gerhardt, H.& Carmeliet, P. Basic and therapeutic aspects of angiogenesis.Cell 146, 873-887 (2011).
36. Sawada, N.et al.Endothelial PGC-1α mediates vascular dysfunction in diabetes.Cell Metab. 19, 246-258 (2014).
37. Giacco, F. & Brownlee, M. Oxidative stress and diabetic complications. Circulation Res. 107, 1058-1070 (2010).
38. Eelen G., de Zeeuw, P., Simons, M. & Carmeliet, P. Endothelial cell metabolism in normal and diseased vasculature.Circulation Res. 116, 1231-1244 (2015).
39. Brownlee M.Biochemistry and molecular cell biology of diabetic complications.Nature 414, 813-820 (2001).
40. Wang, Y.et al.Integrated regulation of stress responses, autophagy and survival by altered intracellular iron stores.Redox Biol. 55, 102407(2022).
41. Ding S., Ma N., Liu H., Tang M.& Mei, J. Sesn2 attenuates the damage of endothelial progenitor cells induced by angiotensin II through regulating the Keap1/Nrf2 signal pathway.Aging 12, 25505-25527 (2020).
42. Muri J.& Kopf, M. Redox regulation of immunometabolism.Nat. Rev. Immunol. 21, 363-381 (2021).
43. Rupp F., Liang L., Geis-Gerstorfer, J., Scheideler, L. & Hüttig, F. Surface characteristics of dental implants: a review.Dental Mater. 34, 40-57 (2018).
PDF

Accesses

Citations

Detail

Sections
Recommended

/