Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability

Bob T. Rosier1, William Johnston2,3, Miguel Carda-Diéguez1, Annabel Simpson4, Elena Cabello-Yeves1,5, Krystyna Piela3, Robert Reilly3, Alejandro Artacho1, Chris Easton4, Mia Burleigh4

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 1. DOI: 10.1038/s41368-023-00266-9

Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability

  • Bob T. Rosier1, William Johnston2,3, Miguel Carda-Diéguez1, Annabel Simpson4, Elena Cabello-Yeves1,5, Krystyna Piela3, Robert Reilly3, Alejandro Artacho1, Chris Easton4, Mia Burleigh4
Author information +
History +

Abstract

The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity (NRC) and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitrate-reducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals (P < 0.05 in all five datasets with n = 20-82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate (a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15 healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment (P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria (P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.

Cite this article

Download citation ▾
Bob T. Rosier, William Johnston, Miguel Carda-Diéguez, Annabel Simpson, Elena Cabello-Yeves, Krystyna Piela, Robert Reilly, Alejandro Artacho, Chris Easton, Mia Burleigh. Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability. International Journal of Oral Science, 2024, 16(0): 1 https://doi.org/10.1038/s41368-023-00266-9

References

1. Theilade E.The non-specific theory in microbial etiology of inflammatory periodontal diseases.J. Clin. Periodontol. 13, 905-911 (1986).
2. Rosier, B. T., Marsh, P. D.& Mira, A. Resilience of the oral microbiota in health: mechanisms that prevent dysbiosis.J. Dent. Res. 97, 371-380 (2018).
3. Marsh P. D.Are dental diseases examples of ecological catastrophes?Microbiology 149, 279-294 (2003).
4. Mira A.,Simon-Soro, A. & Curtis, M. A. Role of microbial communities in the pathogenesis of periodontal diseases and caries.J. Clin. Periodontol. 44, S23-S38 (2017).
5. Feres M.,Retamal-Valdes, B., Gonçalves, C., Cristina Figueiredo, L. & Teles, F. Did Omics change periodontal therapy?Periodontol 2000 85, 182-209 (2021).
6. Chen, T., Marsh, P. D. & Al-Hebshi, N. N. SMDI: An index for measuring subgingival microbial dysbiosis. J. Dent. Res. https://doi.org/10.1177/00220345211035775 (2021).
7. Rosier, B. T.et al.The importance of nitrate reduction for oral health.J. Dent. Res. 101, 887-897 (2022).
8. Vanhatalo, A.et al.Nitrate-responsive oral microbiome modulates nitric oxide homeostasis and blood pressure in humans.Free Radic. Biol. Med. 124, 21-30 (2018).
9. Rosier B. T., Buetas E., Moya-Gonzalvez, E. M., Artacho, A. & Mira, A. Nitrate as a potential prebiotic for the oral microbiome.Sci. Rep. 10, 12895(2020).
10. Hajishengallis G.Periodontitis: from microbial immune subversion to systemic inflammation.Nat. Rev. Immunol. 15, 30-44 (2015).
11. Hajishengallis G.& Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities.Nat. Rev. Immunol. 21, 426-440 (2021).
12. Beck J. D., Papapanou P. N., Philips K. H.& Offenbacher, S. Periodontal medicine: 100 Years of progress.J. Dent. Res. 98, 1053-1062 (2019).
13. Schreiber, F.et al.Denitrification in human dental plaque.BMC Biol. 8, 24(2010).
14. Hyde, E. R.et al.Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis.PLoS ONE 26, 3(2014).
15. Aerts A., Dendale P., Strobel G.& Block, P. Sublingual nitrates during head-up tilt testing for the diagnosis of vasovagal syncope.Am. Heart J. 133, 504-507 (1997).
16. Goh, C. E.et al.Nitrite generating and depleting capacity of the oral microbiome and cardiometabolic risk: results from ORIGINS.J. Am. Heart Assoc. 11, e023038(2022).
17. Hezel M. P.& Weitzberg, E. The oral microbiome and nitric oxide homoeostasis.Oral. Dis. 21, 7-16 (2015).
18. Lundberg, J. O., Carlström, M.& Weitzberg, E. Metabolic effects of dietary nitrate in health and disease.Cell Metab. 28, 9-22 (2018).
19. Morou-Bermúdez, E., Torres-Colón, J. E., Bermúdez, N. S., Patel, R. P. & Joshipura, K. J. Pathways linking oral bacteria, nitric oxide metabolism, and health.J. Dent. Res. 101, 623-631 (2022).
20. Kapil, V.et al.Physiological role for nitrate-reducing oral bacteria in blood pressure control.Free Radic. Biol. Med. 55, 93-100 (2013).
21. Backlund C. J., Sergesketter A. R., Offenbacher S.& Schoenfisch, M. H. Antibacterial efficacy of exogenous nitric oxide on periodontal pathogens.J. Dent. Res. 93, 1089-1094 (2014).
22. Lanas A.Role of nitric oxide in the gastrointestinal tract.Arthritis Res. Ther. 10, S4(2008).
23. Schairer D. O., Chouake J. S., Nosanchuk J. D.& Friedman, A. J. The potential of nitric oxide releasing therapies as antimicrobial agents.Virulence 3, 271-279 (2012).
24. Rosier, B. T.et al.A single dose of nitrate increases resilience against acidification derived from sugar fermentation by the oral microbiome.Front. Cell Infect. Microbiol. 11, 692883(2021).
25. Ikeda, E.et al.Japanese subgingival microbiota in health vs disease and their roles in predicted functions associated with periodontitis.Odontology 108, 280-291 (2020).
26. Pérez-Chaparro, P. J. et al. Do different probing depths exhibit striking differences in microbial profiles?J. Clin. Periodontol. 45, 26-37 (2018).
27. Abusleme, L.et al.The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation.ISME J. 7, 1016-1025 (2013).
28. Griffen, A. L.et al.Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing.ISME J. 6, 1176-1185 (2012).
29. Camelo-Castillo, A. J. et al. Subgingival microbiota in health compared to periodontitis and the influence of smoking.Front. Microbiol. 6, 119(2015).
30. Arredondo, A.et al.Comparative 16S rRNA gene sequencing study of subgingival microbiota of healthy subjects and patients with periodontitis from four different countries.J. Clin. Periodontol. 50, 1176-1187 (2023).
31. Callahan, B. J.et al.DADA2: High-resolution sample inference from Illumina amplicon data.Nat. Methods 13, 581-583 (2016).
32. Team R. C.R: A Language and Environment for Statistical Computing http://www.R-project.org/, http://www.R-project.org/ (2014.
33. Quast, C.et al.The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.Nucleic Acids Res. 41, D590-D596 (2013).
34. Yilmaz, P.et al.The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks.Nucleic Acids Res. 42, D643-D648 (2014).
35. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C.& Kent, R. L. Jr. Microbial complexes in subgingival plaque.J. Clin. Periodontol. 25, 134-144 (1998).
36. Pérez-Chaparro, P. J. et al. Newly identified pathogens associated with periodontitis: a systematic review.J. Dent. Res. 93, 846-858 (2014).
37. Davison, E.et al.The subgingival plaque microbiome, systemic antibodies against bacteria and citrullinated proteins following periodontal therapy.Pathogens 10, 193(2021).
38. Johnston, W.et al.Mechanical biofilm disruption causes microbial and immunological shifts in periodontitis patients.Sci. Rep. 11, 9796(2021).
39. Sanz, M.et al.EFP Workshop participants and methodological consultants. Treatment of stage I-III periodontitis—the EFP S3 level clinical practice guideline.J. Clin. Periodontol. 47, 4-60 (2020).
40. Papapanou, P. N.et al.Periodontitis: consensus report of workgroup 2 of the 2017 World Workshop on the classification of periodontal and peri-implant diseases and conditions.J. Periodontol. 89, S173-S182 (2018).
41. Johnston, W. The Host and Microbial Response to Non-surgical Periodontal Therapy. (University of Glasgow, 2021).
42. Darcey J.& Ashley, M. See you in three months! The rationale for the three monthly periodontal recall interval: a risk based approach.Br. Dent. J. 211, 379-385 (2011).
43. Herrera, D.et al.EFP workshop participants and methodological consultant treatment of stage IV periodontitis: the EFP S3 level clinical practice guideline.J. Clin. Periodontol. 49, 4-71 (2022).
44. Rosier B. T.,Moya-Gonzalvez, E. M., Corell-Escuin, P. & Mira, A. Isolation and characterization of nitrate-reducing bacteria as potential probiotics for oral and systemic health.Front. Microbiol. 11, 555465(2020).
45. Liddle, L.et al.Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: an assessment of the critical difference.Nitric Oxide 82, 1-10 (2019).
46. Lin H.& Peddada, S. D. Analysis of compositions of microbiomes with bias correction.Nat. Commun. 11, 3514(2020).
47. Meuric, V.et al.Signature of microbial dysbiosis in periodontitis.Appl Environ. Microbiol. 83, e00462-17 (2017).
48. Mazurel, D.et al.Nitrate and a nitrate-reducing Rothia aeria strain as potential prebiotic or synbiotic treatments for periodontitis.NPJ Biofilms Microbiomes 9, 40(2023).
49. Mantilla Gomez, S. M. et al. Tongue coating and salivary bacterial counts in healthy/gingivitis subjects and periodontitis patients.J. Clin. Periodontol. 28, 970-978 (2001).
50. Burleigh, M. C.et al.Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria.Free Radic. Biol. Med. 120, 80-88 (2018).
51. Liddle, L.et al.Reduced nitric oxide synthesis in winter: a potential contributing factor to increased cardiovascular risk.Nitric Oxide 127, 1-9 (2022).
52. Webb, A. J.et al.Acute blood pressure lowering, vasoprotective, and antiplatelet properties of dietary nitrate via bioconversion to nitrite.Hypertension 51, 784-790 (2008).
53. Larsen F. J., Ekblom B., Sahlin K., Lundberg J. O.& Weitzberg, E. Effects of dietary nitrate on blood pressure in healthy volunteers.N. Engl. J. Med. 355, 2792-2793 (2006).
54. Fernandes, D.et al.Local delivery of nitric oxide prevents endothelial dysfunction in periodontitis.Pharm. Res. 188, 106616(2022).
55. Bahadoran Z., Ghasemi A., Mirmiran P., Azizi F.& Hadaegh, F. Beneficial effects of inorganic nitrate/nitrite in type 2 diabetes and its complications.Nutr. Metab. 12, 16(2015).
56. Joshipura K. J.,Muñoz-Torres, F. J., Morou-Bermudez, E. & Patel, R. P. Over-the-counter mouthwash use and risk of pre-diabetes/diabetes.Nitric Oxide 71, 14-20 (2017).
57. Ghasemi A.& Jeddi, S. Anti-obesity and anti-diabetic effects of nitrate and nitrite.Nitric Oxide 70, 9-24 (2017).
58. Preshaw, P. M.et al.Periodontitis and diabetes: a two-way relationship.Diabetologia 55, 21-31 (2012).
59. Kebschull, M., Demmer, R. T.& Papapanou, P. N. Gum bug, leave my heart alone!”-epidemiologic and mechanistic evidence linking periodontal infections and atherosclerosis.J. Dent. Res. 89, 879-902 (2010).
60. Tashie, W.et al.Altered bioavailability of nitric oxide and L-arginine is a key determinant of endothelial dysfunction in preeclampsia.Biomed. Res. Int. 2020, 3251956(2020).
61. Altemani F., Barrett H. L., Callaway L. K., McIntyre, H. D., & Dekker Nitert, M. Reduced abundance of nitrate-reducing bacteria in the oral microbiota of women with future preeclampsia.Nutrients 14, 1139(2022).
62. Kim A. J., Lo A. J., Pullin D. A., Thornton-Johnson, D. S. & Karimbux, N. Y. Scaling and root planing treatment for periodontitis to reduce preterm birth and low birth weight: a systematic review and meta-analysis of randomized controlled trials.J. Periodontol. 83, 1508-1519 (2012).
63. Tonetti, M. S.et al.Treatment of periodontitis and endothelial function.N. Engl. J. Med. 356, 911-920 (2018).
64. Monaghan, C.et al.The effects of two different doses of ultraviolet-A light exposure on nitric oxide metabolites and cardiorespiratory outcomes.Eur. J. Appl. Physiol. 118, 1043-1052 (2018).
65. Liddle, L.et al.Variability in nitrate-reducing oral bacteria and nitric oxide metabolites in biological fluids following dietary nitrate administration: an assessment of the critical difference.Nitric Oxide 83, 1-10 (2019).
66. Jiang, Y.et al.Comparison of red-complex bacteria between saliva and subgingival plaque of periodontitis patients: a systematic review and meta-analysis.Front. Cell Infect. Microbiol. 11, 727732(2021).
PDF

Accesses

Citations

Detail

Sections
Recommended

/