Omics for deciphering oral microecology

Yongwang Lin, Xiaoyue Liang, Zhengyi Li, Tao Gong, Biao Ren, Yuqing Li, Xian Peng

PDF
International Journal of Oral Science ›› 2024, Vol. 16 ›› Issue (0) : 2. DOI: 10.1038/s41368-023-00264-x
REVIEW ARTICLE

Omics for deciphering oral microecology

  • Yongwang Lin, Xiaoyue Liang, Zhengyi Li, Tao Gong, Biao Ren, Yuqing Li, Xian Peng
Author information +
History +

Abstract

The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.

Cite this article

Download citation ▾
Yongwang Lin, Xiaoyue Liang, Zhengyi Li, Tao Gong, Biao Ren, Yuqing Li, …Xian Peng. Omics for deciphering oral microecology. International Journal of Oral Science, 2024, 16(0): 2 https://doi.org/10.1038/s41368-023-00264-x

References

1. Jakubovics N. S., Goodman S. D.,Mashburn-Warren, L., Stafford, G. P. & Cieplik, F. The dental plaque biofilm matrix. Periodontol. 2000. https://doi.org/10.1111/prd.12361(2021).
2. Balachandran, M., Cross, K. L.& Podar, M. Single-cell genomics and the oral microbiome.J. Dent. Res. 99, 613-620 (2020).
3. Diaz P. I.& Valm, A. M. Microbial interactions in oral communities mediate emergent biofilm properties.J. Dent. Res. 99, 18-25 (2020).
4. Mark Welch, J. L., Dewhirst, F. E. & Borisy, G. G. Biogeography of the oral microbiome: the site-specialist hypothesis.Annu. Rev. Microbiol. 73, 335-358 (2019).
5. Vanstokstraeten, R.et al.Genotypic resistance determined by whole genome sequencing versus phenotypic resistance in 234 Escherichia coli isolates.Sci. Rep. 13, 449(2023).
6. Cross, K. L.et al.Targeted isolation and cultivation of uncultivated bacteria by reverse genomics.Nat. Biotechnol. 37, 1314-1321 (2019).
7. Sherry, N. L.et al.An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance.Nat. Commun. 14, 60(2023).
8. Prasad M., Shetty S. K., Nair B. G., Pal S.& Madhavan, A. A novel and improved selective media for the isolation and enumeration of Klebsiella species.Appl. Microbiol. Biotechnol. 106, 8273-8284 (2022).
9. Mikami, H.et al.Virtual-freezing fluorescence imaging flow cytometry.Nat. Commun. 11, 1162(2020).
10. Lin L., Du Y., Song J., Wang W.& Yang, C. Imaging commensal microbiota and pathogenic bacteria in the gut.Acc. Chem. Res. 54, 2076-2087 (2021).
11. Jiang, Z.et al.Surfactant-stripped micelles with aggregation-induced enhanced emission for bimodal gut imaging in vivo and microbiota tagging ex vivo.Adv. Healthc. Mater. 10, e2100356(2021).
12. Lagier, J. C.et al.Culturing the human microbiota and culturomics.Nat. Rev. Microbiol. 16, 540-550 (2018).
13. Escapa, I. F.et al.New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems 3, https://doi.org/10.1128/mSystems.00187-18 (2018).
14. Aggarwal, N.et al.Microbiome and human health: current understanding, engineering, and enabling technologies.Chem. Rev. 123, 31-72 (2023).
15. Zhu, J.et al.Over 50,000 metagenomically assembled draft genomes for the human oral microbiome reveal new taxa.Genomics Proteom. Bioinforma. 20, 246-259 (2022).
16. Jiang Q., Liu J., Chen L., Gan N.& Yang, D. The oral microbiome in the elderly with dental caries and health.Front. Cell Infect. Microbiol. 8, 442(2018).
17. Baker J. L.Using nanopore sequencing to obtain complete bacterial genomes from saliva samples.mSystems 7, e0049122(2022).
18. Wang, Y.et al.Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities. mSystems 4, https://doi.org/10.1128/mSystems.00450-19 (2019).
19. Ojala, T., Kankuri, E.& Kankainen, M. Understanding human health through metatranscriptomics.Trends Mol. Med. 29, 376-389 (2023).
20. Kressirer, C. A.et al.Functional profiles of coronal and dentin caries in children.J. Oral. Microbiol. 10, 1495976(2018).
21. Dame-Teixeira, N., Parolo, C. C. F., Malz, M., Devine, D. A. & Do, T. Gene expression profile of Scardovia spp. in the metatranscriptome of root caries.Braz. Oral. Res. 34, e042(2020).
22. Nowicki, E. M.et al.Microbiota and metatranscriptome changes accompanying the onset of gingivitis. mBio 9, https://doi.org/10.1128/mBio.00575-18 (2018).
23. Ram-Mohan, N. & Meyer, M. M. Comparative metatranscriptomics of periodontitis supports a common polymicrobial shift in metabolic function and identifies novel putative disease-associated ncRNAs.Front. Microbiol. 11, 482(2020).
24. Nemoto, T.et al.Discrimination of bacterial community structures among healthy, gingivitis, and periodontitis statuses through integrated metatranscriptomic and network analyses.mSystems 6, e0088621(2021).
25. Peters, S. L.et al.Experimental validation that human microbiome phages use alternative genetic coding.Nat. Commun. 13, 5710(2022).
26. Bostanci, N.et al.Metaproteome and metabolome of oral microbial communities.Periodontol. 2000 85, 46-81 (2021).
27. Belstrom, D.et al.Metaproteomics of saliva identifies human protein markers specific for individuals with periodontitis and dental caries compared to orally healthy controls.PeerJ 4, e2433(2016).
28. Belda-Ferre, P. et al. The human oral metaproteome reveals potential biomarkers for caries disease.Proteomics 15, 3497-3507 (2015).
29. Marchesan, J. T.et al.Association of synergistetes and cyclodipeptides with periodontitis.J. Dent. Res. 94, 1425-1431 (2015).
30. Bregy, L.et al.Differentiation of oral bacteria in in vitro cultures and human saliva by secondary electrospray ionization-mass spectrometry.Sci. Rep. 5, 15163(2015).
31. Nascimento, M. M.et al.Metabolic profile of supragingival plaque exposed to arginine and fluoride.J. Dent. Res. 98, 1245-1252 (2019).
32. Kunath, B. J.et al.Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi-omic analyses.Microbiome 10, 243(2022).
33. Califf, K. J.et al.Multi-omics analysis of periodontal pocket microbial communities pre- and posttreatment. mSystems 2, https://doi.org/10.1128/mSystems.00016-17 (2017).
34. Overmyer, K. A.et al.Proteomics, lipidomics, metabolomics, and 16S DNA sequencing of dental plaque from patients with diabetes and periodontal disease.Mol. Cell Proteom. 20, 100126(2021).
35. Lloréns-Rico, V., Simcock, J. A., Huys, G. R. B. & Raes, J. Single-cell approaches in human microbiome research.Cell 185, 2725-2738 (2022).
36. Vandereyken K., Sifrim A., Thienpont B.& Voet, T. Methods and applications for single-cell and spatial multi-omics.Nat. Rev. Genet. 24, 494-515 (2023).
37. Campbell, J. H.et al.UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota.Proc. Natl Acad. Sci. USA 110, 5540-5545 (2013).
38. Beall C. J., Campbell A. G., Griffen A. L., Podar M.& Leys, E. J. Genomics of the uncultivated, periodontitis-associated bacterium Tannerella sp. BU045 (Oral Taxon 808). mSystems 3, https://doi.org/10.1128/mSystems.00018-18 (2018).
39. Campbell, A. G.et al.Multiple single-cell genomes provide insight into functions of uncultured Deltaproteobacteria in the human oral cavity.PLoS ONE 8, e59361(2013).
40. Cross, K. L.et al.Insights into the evolution of host association through the isolation and characterization of a novel human periodontal pathobiont, Desulfobulbus oralis. mBio. 9, https://doi.org/10.1128/mBio.02061-17 (2018).
41. Aguiar-Pulido, V. et al. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis.Evol. Bioinform. Online 12, 5-16 (2016).
42. Cao, Z.et al.Encoding with a fluorescence-activating and absorption-shifting tag generates living bacterial probes for mammalian microbiota imaging.Mater. Today Bio 15, 100311(2022).
43. Hudak J. E., Alvarez D., Skelly A., von Andrian, U. H. & Kasper, D. L. Illuminating vital surface molecules of symbionts in health and disease.Nat. Microbiol. 2, 17099(2017).
44. Wang, W.et al.Assessing the viability of transplanted gut microbiota by sequential tagging with D-amino acid-based metabolic probes.Nat. Commun. 10, 1317(2019).
45. Berry, D.et al.Host-compound foraging by intestinal microbiota revealed by single-cell stable isotope probing.Proc. Natl Acad. Sci. USA 110, 4720-4725 (2013).
46. Wang W.& Chen, X. Antibiotics-based fluorescent probes for selective labeling of Gram-negative and Gram-positive bacteria in living microbiotas.Sci. China Chem. 61, 792-796 (2018).
47. Kato, H.et al.Systematic review and meta-analysis to explore optimal therapeutic range of vancomycin trough level for infected paediatric patients with Gram-positive pathogens to reduce mortality and nephrotoxicity risk.Int. J. Antimicrob. Agents 58, 106393(2021).
48. Moison, E.et al.A fluorescent probe distinguishes between inhibition of early and late steps of lipopolysaccharide biogenesis in whole cells.ACS Chem. Biol. 12, 928-932 (2017).
49. Cochrane, S. A.et al.Antimicrobial lipopeptide tridecaptin A1 selectively binds to Gram-negative lipid II.Proc. Natl Acad. Sci. USA 113, 11561-11566 (2016).
50. Wang W., Wang Y., Lin L., Song Y.& Yang, C. J. A tridecaptin-based fluorescent probe for differential staining of Gram-negative bacteria.Anal. Bioanal. Chem. 411, 4017-4023 (2019).
51. Geva-Zatorsky, N. et al. In vivo imaging and tracking of host-microbiota interactions via metabolic labeling of gut anaerobic bacteria.Nat. Med. 21, 1091-1100 (2015).
52. Wang, W.et al.Metabolic labeling of peptidoglycan with NIR-II dye enables in vivo imaging of gut microbiota.Angew. Chem. Int. Ed. Engl. 59, 2628-2633 (2020).
53. Kuru, E.et al.Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation.Nat. Microbiol. 2, 1648-1657 (2017).
54. Kuru, E.et al.In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids.Angew. Chem. Int. Ed. Engl. 51, 12519-12523 (2012).
55. Wang, W., Zhu, Y.& Chen, X. Selective imaging of gram-negative and gram-positive microbiotas in the mouse gut.Biochemistry 56, 3889-3893 (2017).
56. Shi, H.et al.Highly multiplexed spatial mapping of microbial communities.Nature 588, 676-681 (2020).
57. Munyenyembe K., Timmons C., Weiner A. K.M., Katz, L. A. & Yan, Y. DAPI staining and DNA content estimation of nuclei in uncultivable microbial eukaryotes (Arcellinida and Ciliates).Eur. J. Protistol. 81, 125840(2021).
58. Lyu, X.et al.Ursolic acid inhibits multi-species biofilms developed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii.Arch. Oral. Biol. 125, 105107(2021).
59. Ren, Z.et al.Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions.Proc. Natl Acad. Sci. USA 119, e2209699119(2022).
60. Batani G., Bayer K., Boge J., Hentschel U.& Thomas, T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria.Sci. Rep. 9, 18618(2019).
61. Valm A. M.,Mark Welch, J. L. & Borisy, G. G. CLASI-FISH: principles of combinatorial labeling and spectral imaging.Syst. Appl. Microbiol. 35, 496-502 (2012).
62. Wagner, M., Horn, M.& Daims, H. Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes.Curr. Opin. Microbiol. 6, 302-309 (2003).
63. Streett, H. E., Kalis, K. M.& Papoutsakis, E. T. A strongly fluorescing anaerobic reporter and protein-tagging system for clostridium organisms based on the fluorescence-activating and absorption-shifting tag protein (FAST). Appl. Environ. Microbiol. 85, https://doi.org/10.1128/AEM.00622-19 (2019).
64. Kumar, N., Hori, Y.& Kikuchi, K. Photoactive yellow protein and its chemical probes: an approach to protein labelling in living cells.J. Biochem. 166, 121-127 (2019).
65. Yin, H.et al.Mass tag-encoded nanointerfaces for multiplexed mass spectrometric analysis and imaging of biomolecules.Nanoscale 15, 2529-2540 (2023).
66. Kaltenpoth, M., Strupat, K.& Svatos, A. Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH.ISME J. 10, 527-531 (2016).
67. Li, H. & Li, Z. The exploration of microbial natural products and metabolic interaction guided by mass spectrometry imaging. Bioengineering 9, https://doi.org/10.3390/bioengineering9110707 (2022).
68. Singhal N., Kumar M., Kanaujia P. K.& Virdi, J. S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis.Front. Microbiol. 6, 791(2015).
69. El Hamzaoui, B. et al. Detection of Bartonella spp. in fleas by MALDI-TOF MS.PLoS Negl. Trop. Dis. 12, e0006189(2018).
70. Bertzbach, L. D., Kaufer, B. B.& Karger, A. Applications of mass spectrometry imaging in virus research.Adv. Virus Res. 109, 31-62 (2021).
71. Michan, C. Picturing natural microbiomes: matrix-assisted laser desorption/ionization mass spectrometry imaging for unravelling the architecture of environmental microbial communities. Environ. Microbiol. https://doi.org/10.1111/1462-2920.16247 (2022).
72. Jurikova, T.et al. Bringing SEM and MSI closer than ever before: visualizing aspergillus and pseudomonas infection in the rat lungs. J. Fungi 6, https://doi.org/10.3390/jof6040257 (2020).
73. Dong Y.& Aharoni, A. Image to insight: exploring natural products through mass spectrometry imaging.Nat. Prod. Rep. 39, 1510-1530 (2022).
74. Specker J. T., Smith A. B., Keenan O., Zackular, J. P. & Prentice, B. M. Investigation of microbial cooperation via imaging mass spectrometry analysis of bacterial colonies grown on agar and in tissue during infection. J. Vis. Exp. https://doi.org/10.3791/64200 (2022).
75. Geier, B.et al.Spatial metabolomics of in situ host-microbe interactions at the micrometre scale.Nat. Microbiol. 5, 498-510 (2020).
76. Geier, B.et al.Connecting structure and function from organisms to molecules in small-animal symbioses through chemo-histo-tomography. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2023773118(2021).
77. Dunham S. J., Ellis J. F., Li B.& Sweedler, J. V. Mass spectrometry imaging of complex microbial communities.Acc. Chem. Res. 50, 96-104 (2017).
78. Pitchapa R., Dissook S., Putri S. P., Fukusaki, E. & Shimma, S. MALDI mass spectrometry imaging reveals the existence of an N-acyl-homoserine lactone quorum sensing system in pseudomonas putida Biofilms. Metabolites 12, https://doi.org/10.3390/metabo12111148 (2022).
79. Brockmann E. U., Steil D., Bauwens A., Soltwisch J.& Dreisewerd, K. Advanced methods for MALDI-MS imaging of the chemical communication in microbial communities.Anal. Chem. 91, 15081-15089 (2019).
80. Lukowski, J. K.et al.Expanding molecular coverage in mass spectrometry imaging of microbial systems using metal-assisted laser desorption/ionization.Microbiol. Spectr. 9, e0052021(2021).
81. Barroso, E. M.et al.Raman spectroscopy for assessment of bone resection margins in mandibulectomy for oral cavity squamous cell carcinoma.Eur. J. Cancer 92, 77-87 (2018).
82. Zhang, Y.et al.Raman spectroscopy: a potential diagnostic tool for oral diseases.Front. Cell Infect. Microbiol. 12, 775236(2022).
83. Sundramoorthy, A. K., Atchudan, R.& Arya, S. Utilization of Raman spectroscopy in biochemical fingerprint analysis for oral cancer screening and diagnosis.Oral. Oncol. 135, 106192(2022).
84. Gieroba, B.et al. The FT-IR and Raman spectroscopies as tools for biofilm characterization created by cariogenic streptococci. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21113811 (2020).
85. Daood, U., Burrow, M. F.& Yiu, C. K. Y. Effect of a novel quaternary ammonium silane cavity disinfectant on cariogenic biofilm formation.Clin. Oral. Investig. 24, 649-661 (2020).
86. Pezzotti, G.et al.Silicon nitride bioceramics induce chemically driven lysis in porphyromonas gingivalis.Langmuir 32, 3024-3035 (2016).
87. Kriem L. S., Wright K., Ccahuana-Vasquez, R. A. & Rupp, S. Confocal Raman microscopy to identify bacteria in oral subgingival biofilm models.PLoS ONE 15, e0232912(2020).
88. Kriem L. S., Wright K., Ccahuana-Vasquez, R. A. & Rupp, S. Mapping of a subgingival dual-species biofilm model using confocal Raman microscopy.Front. Microbiol. 12, 729720(2021).
89. Witkowska E., Lasica A. M., Nicinski K., Potempa J.& Kaminska, A. In search of spectroscopic signatures of periodontitis: a SERS-based magnetomicrofluidic sensor for detection of porphyromonas gingivalis and aggregatibacter actinomycetemcomitans.ACS Sens. 6, 1621-1635 (2021).
90. Sawhney, S. S.et al.Assessment of the urinary microbiota of MSM using urine culturomics reveals a diverse microbial environment.Clin. Chem. 68, 192-203 (2021).
91. Złoch, M.et al. Culturomics approach to identify diabetic foot infection bacteria. Int. J. Mol. Sci. 22, https://doi.org/10.3390/ijms22179574 (2021).
92. Martellacci, L.et al. Characterizing peri-implant and sub-gingival microbiota through culturomics. First isolation of some species in the oral cavity. A pilot study. Pathogens 9, https://doi.org/10.3390/pathogens9050365 (2020).
93. Wang B., Sun Y., Ma Y.& Yan, Q. Isolation and identification of oral bacteria from healthy people based on culturomics technology.Clin. J. Microecol. 34, 175-178 (2022).
94. Baker, J. L.et al.Deep metagenomics examines the oral microbiome during dental caries, revealing novel taxa and co-occurrences with host molecules.Genome Res. 31, 64-74 (2021).
95. Murugkar P. P., Collins A. J., Chen T.& Dewhirst, F. E. Isolation and cultivation of candidate phyla radiation Saccharibacteria (TM7) bacteria in coculture with bacterial hosts.J. Oral. Microbiol. 12, 1814666(2020).
PDF

Accesses

Citations

Detail

Sections
Recommended

/