Tooth number abnormality: from bench to bedside

Han Zhang , Xuyan Gong , Xiaoqiao Xu , Xiaogang Wang , Yao Sun

International Journal of Oral Science ›› 2023, Vol. 15 ›› Issue (1) : 5

PDF
International Journal of Oral Science ›› 2023, Vol. 15 ›› Issue (1) : 5 DOI: 10.1038/s41368-022-00208-x
Review Article

Tooth number abnormality: from bench to bedside

Author information +
History +
PDF

Abstract

Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.

Cite this article

Download citation ▾
Han Zhang, Xuyan Gong, Xiaoqiao Xu, Xiaogang Wang, Yao Sun. Tooth number abnormality: from bench to bedside. International Journal of Oral Science, 2023, 15(1): 5 DOI:10.1038/s41368-022-00208-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cammarata-Scalisi F, Avendano A, Callea M. Main genetic entities associated with supernumerary teeth. Arch. Argent. Pediatr., 2018, 116: 437-444.

[2]

Demiriz L, Durmuslar MC, Misir AF. Prevalence and characteristics of supernumerary teeth: a survey on 7348 people. J. Int Soc. Prev. Community Dent., 2015, 5: S39-S43.

[3]

De Santis D, . Syndromes associated with dental agenesis. Minerva Stomatol., 2019, 68: 42-56.

[4]

Al-Ani AH, Antoun JS, Thomson WM, Merriman TR, Farella M. Hypodontia: an update on Its etiology, classification, and clinical management. Biomed. Res. Int, 2017, 2017: 9378325.

[5]

Mogollon, I., Moustakas-Verho, J. E., Niittykoski, M. & Ahtiainen, L. The initiation knot is a signaling center required for molar tooth development. Development https://doi.org/10.1242/dev.194597 (2021).

[6]

Ahtiainen L, . Directional cell migration, but not proliferation, drives hair placode morphogenesis. Dev. Cell, 2014, 28: 588-602.

[7]

Prochazka J, . Migration of founder epithelial cells drives proper molar tooth positioning and morphogenesis. Dev. Cell, 2015, 35: 713-724.

[8]

Li J, Economou AD, Vacca B, Green JBA. Epithelial invagination by a vertical telescoping cell movement in mammalian salivary glands and teeth. Nat. Commun., 2020, 11

[9]

Li J, Chatzeli L, Panousopoulou E, Tucker AS, Green JB. Epithelial stratification and placode invagination are separable functions in early morphogenesis of the molar tooth. Development, 2016, 143: 670-681.

[10]

Balic A. Concise review: cellular and molecular mechanisms regulation of tooth initiation. Stem Cells, 2019, 37: 26-32.

[11]

Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Curr. Top. Dev. Biol., 2015, 115: 157-186.

[12]

Bonczek O, . Tooth agenesis: what do we know and is there a connection to cancer?. Clin. Genet, 2021, 99: 493-502.

[13]

Lu X, . The epidemiology of supernumerary teeth and the associated molecular mechanism. Organogenesis, 2017, 13: 71-82.

[14]

Wijn MA, Keller JJ, Giardiello FM, Brand HS. Oral and maxillofacial manifestations of familial adenomatous polyposis. Oral. Dis., 2007, 13: 360-365.

[15]

Mortada I, Mortada R, Al Bazzal M. Dental pulp stem cells and the management of neurological diseases: an update. J. Neurosci. Res, 2018, 96: 265-272.

[16]

Yao J, . Human supernumerary teeth-derived apical papillary stem cells possess preferable characteristics and efficacy on hepatic fibrosis in mice. Stem Cells Int, 2020, 2020: 6489396.

[17]

Makino Y, . Immune therapeutic potential of stem cells from human supernumerary teeth. J. Dent. Res, 2013, 92: 609-615.

[18]

Takahashi K, . Development of tooth regenerative medicine strategies by controlling the number of teeth using targeted molecular therapy. Inflamm. Regen., 2020, 40: 21.

[19]

Murashima-Suginami A. et al. Anti-USAG-1 therapy for tooth regeneration through enhanced BMP signaling. Sci Adv. https://doi.org/10.1126/sciadv.abf1798 (2021).

[20]

Mishima S, . Local application of Usag-1 siRNA can promote tooth regeneration in Runx2-deficient mice. Sci. Rep., 2021, 11

[21]

Wu Z, . Whole-tooth regeneration by allogeneic cell reassociation in pig jawbone. Tissue Eng. Part A, 2019, 25: 1202-1212.

[22]

Nakao K, . The development of a bioengineered organ germ method. Nat. Methods, 2007, 4: 227-230.

[23]

Cate, A. J., & Nanci, A. Ten Cate’s Oral Histology: Development, Structure, and Function 9th edn (ed Nanci, A.) Ch. 5 (Elsevier, 2003).

[24]

Lan Y, Jia S, Jiang R. Molecular patterning of the mammalian dentition. Semin Cell Dev. Biol., 2014, 25-26: 61-70.

[25]

Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev., 2000, 92: 19-29.

[26]

D’Souza RN, Klein OD. Unraveling the molecular mechanisms that lead to supernumerary teeth in mice and men: current concepts and novel approaches. Cells Tissues Organs, 2007, 186: 60-69.

[27]

Juuri E, Balic A. The biology underlying abnormalities of tooth number in humans. J. Dent. Res, 2017, 96: 1248-1256.

[28]

Stembirek J, . Early morphogenesis of heterodont dentition in minipigs. Eur. J. Oral. Sci., 2010, 118: 547-558.

[29]

Kim EJ, Jung SY, Wu Z, Zhang S, Jung HS. Sox2 maintains epithelial cell proliferation in the successional dental lamina. Cell Prolif., 2020, 53: e12729.

[30]

Dosedelova H, . Fate of the molar dental lamina in the monophyodont mouse. PLoS One, 2015, 10: e0127543.

[31]

Amen M, . PITX2 and beta-catenin interactions regulate Lef-1 isoform expression. Mol. Cell Biol., 2007, 27: 7560-7573.

[32]

Sun Z, . Sox2 and Lef-1 interact with Pitx2 to regulate incisor development and stem cell renewal. Development, 2016, 143: 4115-4126.

[33]

Yu W. et al. Pitx2-Sox2-Lef1 interactions specify progenitor oral/dental epithelial cell signaling centers. Development https://doi.org/10.1242/dev.186023 (2020).

[34]

Vadlamudi U, . PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter. J. Cell Sci., 2005, 118: 1129-1137.

[35]

Rostampour N, Appelt CM, Abid A, Boughner JC. Expression of new genes in vertebrate tooth development and p63 signaling. Dev. Dyn., 2019, 248: 744-755.

[36]

Laurikkala J, . p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development, 2006, 133: 1553-1563.

[37]

Vangenderen C, . Development of several organs that require inductive Epithelial–Mesenchymal interactions is impaired in Lef-1-deficient mice. Gene Dev., 1994, 8: 2691-2703.

[38]

Sasaki T, . LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev. Biol., 2005, 278: 130-143.

[39]

Kratochwil K, Dull M, Farinas I, Galceran T, Grosschedl R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Gene Dev., 1996, 10: 1382-1394.

[40]

Laurikkala J, . TNF signaling via the ligand-receptor pair ectodysplasin and edar controls the function of epithelial signaling centers and is regulated by Wnt and activin during tooth organogenesis. Dev. Biol., 2001, 229: 443-455.

[41]

Kim, R. et al. Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development. Development https://doi.org/10.1242/dev.199685 (2021).

[42]

Panousopoulou E, Green JB. Invagination of ectodermal placodes is driven by cell intercalation-mediated contraction of the suprabasal tissue canopy. PLoS Biol., 2016, 14: e1002405.

[43]

Mammoto T, . Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell, 2011, 21: 758-769.

[44]

Tucker A, Sharpe P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat. Rev. Genet, 2004, 5: 499-508.

[45]

Rosowski J, . Emulating the early phases of human tooth development in vitro. Sci. Rep., 2019, 9

[46]

Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs. I. Reorganization of the dental epithelium during tooth-germ reconstruction. J. Embryol. Exp. Morphol., 1970, 24: 159-171.

[47]

Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J. Embryol. Exp. Morphol., 1970, 24: 173-186.

[48]

Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech. Dev., 1997, 67: 111-123.

[49]

Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch. Oral. Biol., 1987, 32: 123-127.

[50]

Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development, 1988, 103: 155-169.

[51]

Mogollon I, Ahtiainen L. Live tissue imaging sheds light on cell level events during ectodermal organ development. Front. Physiol., 2020, 11: 818.

[52]

Abramyan J, Geetha-Loganathan P, Sulcova M, Buchtova M. Role of cell death in cellular processes during odontogenesis. Front Cell Dev. Biol., 2021, 9: 671475.

[53]

Ahtiainen L, Uski I, Thesleff I, Mikkola ML. Early epithelial signaling center governs tooth budding morphogenesis. J. Cell Biol., 2016, 214: 753-767.

[54]

Zhu XJ, . Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis. J. Biol. Chem., 2013, 288: 12080-12089.

[55]

Matalova E, Tucker AS, Sharpe PT. Death in the life of a tooth. J. Dent. Res., 2004, 83: 11-16.

[56]

Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development, 1998, 125: 161-169.

[57]

Li J, . Mesenchymal Sufu regulates development of mandibular molars via Shh signaling. J. Dent. Res., 2019, 98: 1348-1356.

[58]

Du W, Hu JK, Du W, Klein OD. Lineage tracing of epithelial cells in developing teeth reveals two strategies for building signaling centers. J. Biol. Chem., 2017, 292: 15062-15069.

[59]

Obara N, Lesot H. Asymmetrical growth, differential cell proliferation, and dynamic cell rearrangement underlie epithelial morphogenesis in mouse molar development. Cell Tissue Res., 2007, 330: 461-473.

[60]

Jernvall J, Kettunen P, Karavanova I, Martin LB, Thesleff I. Evidence for the role of the enamel Knot as a control center in mammalian tooth Cusp formation—nondividing cells express growth-stimulating Fgf-4 gene. Int J. Dev. Biol., 1994, 38: 463-469.

[61]

Pippi R. Odontomas and supernumerary teeth: is there a common origin?. Int J. Med. Sci., 2014, 11: 1282-1297.

[62]

Miyoshi S, . An epidemiological study of supernumerary primary teeth in Japanese children: a review of racial differences in the prevalence. Oral. Dis., 2000, 6: 99-102.

[63]

Salcido-Garcia JF, Ledesma-Montes C, Hernandez-Flores F, Perez D, Garces-Ortiz M. Frequency of supernumerary teeth in Mexican population. Med. Oral. Patol. Oral. Cir. Bucal, 2004, 9: 407-409.

[64]

Rajab LD, Hamdan MA. Supernumerary teeth: review of the literature and a survey of 152 cases. Int J. Paediatr. Dent., 2002, 12: 244-254.

[65]

Ma X, . Epidemiological, clinical, radiographic characterization of non-syndromic supernumerary teeth in Chinese children and adolescents. Oral. Dis., 2021, 27: 981-992.

[66]

Kuchler EC, Costa AG, Costa Mde C, Vieira AR, Granjeiro JM. Supernumerary teeth vary depending on gender. Braz. Oral. Res, 2011, 25: 76-79.

[67]

Alvira-Gonzalez J, Gay-Escoda C. Non-syndromic multiple supernumerary teeth: meta-analysis. J. Oral. Pathol. Med., 2012, 41: 361-366.

[68]

Hajmohammadi E, Najirad S, Mikaeili H, Kamran A. Epidemiology of supernumerary teeth in 5000 radiography films: investigation of patients referring to the clinics of Ardabil in 2015–2020. Int J. Dent., 2021, 2021: 6669436.

[69]

Chen KC, . Unusual supernumerary teeth and treatment outcomes analyzed for developing improved diagnosis and management plans. J. Oral. Maxillofac. Surg., 2019, 77: 920-931.

[70]

Mahto RK, . Nonsyndromic bilateral posterior maxillary supernumerary teeth: a report of two cases and review. Case Rep. Dent., 2018, 2018: 5014179.

[71]

Kreiborg S, Jensen BL. Tooth formation and eruption—lessons learnt from cleidocranial dysplasia. Eur. J. Oral. Sci., 2018, 126: 72-80.

[72]

Suljkanovic N, Balic D, Begic N. Supernumerary and supplementary teeth in a non-syndromic patients. Med. Arch., 2021, 75: 78-81.

[73]

Moller LH, Pradel W, Gedrange T, Botzenhart UU. Prevalence of hypodontia and supernumerary teeth in a German cleft lip with/without palate population. BMC Oral. Health, 2021, 21

[74]

Palaska PK, Antonarakis GS. Prevalence and patterns of permanent tooth agenesis in individuals with Down syndrome: a meta-analysis. Eur. J. Oral. Sci., 2016, 124: 317-328.

[75]

Kantaputra PN, . WNT10B mutations associated with isolated dental anomalies. Clin. Genet., 2018, 93: 992-999.

[76]

Wong SW, . Nine novel PAX9 mutations and a distinct tooth agenesis genotype-phenotype. J. Dent. Res., 2018, 97: 155-162.

[77]

Koskinen S, Keski-Filppula R, Alapulli H, Nieminen P, Anttonen V. Familial oligodontia and regional odontodysplasia associated with a PAX9 initiation codon mutation. Clin. Oral. Investig., 2019, 23: 4107-4111.

[78]

Jurek A., Gozdowski D., Czochrowska E. M., Zadurska M. Effect of tooth agenesis on mandibular morphology and position. Int. J. Environ. Res. Public Health. https://doi.org/10.3390/ijerph182211876 (2021).

[79]

Rodrigues AS, . Is dental agenesis associated with craniofacial morphology pattern? A systematic review and meta-analysis. Eur. J. Orthod., 2020, 42: 534-543.

[80]

Agarwal P, Vinuth DP, Dube G, Dube P. Nonsyndromic tooth agenesis patterns and associated developmental dental anomalies: a literature review with radiographic illustrations. Minerva Stomatol, 2013, 62: 31-41.

[81]

Thesleff I. The genetic basis of tooth development and dental defects. Am. J. Med. Genet. A, 2006, 140: 2530-2535.

[82]

Palikaraki G., Vardas E., Mitsea A. Two rare cases of non-syndromic paramolars with family occurrence and a review of literature. Dent J (Basel). https://doi.org/10.3390/dj7020038 (2019).

[83]

Garvey MT, Barry HJ, Blake M. Supernumerary teeth-an overview of classification, diagnosis and management. J. Can. Dent. Assoc., 1999, 65: 612-616.

[84]

Yu F, . A novel mutation of adenomatous polyposis coli (APC) gene results in the formation of supernumerary teeth. J. Cell Mol. Med., 2018, 22: 152-162.

[85]

Khan MI, Ahmed N, Neela PK, Unnisa N. The human genetics of dental anomalies. Glob. Med. Genet, 2022, 9: 76-81.

[86]

Dourado MR, . Enamel renal syndrome: a novel homozygous FAM20A founder mutation in 5 new Brazilian families. Eur. J. Med. Genet, 2019, 62: 103561.

[87]

Neufeld KL, Zhang F, Cullen BR, White RL. APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep., 2000, 1: 519-523.

[88]

Wang XP, . Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development, 2009, 136: 1939-1949.

[89]

Liu F, . Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev. Biol., 2008, 313: 210-224.

[90]

Jarvinen E, . Continuous tooth generation in mouse is induced by activated epithelial Wnt/beta-catenin signaling. Proc. Natl Acad. Sci. USA, 2006, 103: 18627-18632.

[91]

Kassai Y, . Regulation of mammalian tooth cusp patterning by ectodin. Science, 2005, 309: 2067-2070.

[92]

Ohazama A. et al. Lrp4 modulates extracellular integration of cell signaling pathways in development. PLoS One. 3, e4092. (2008).

[93]

Ahn Y, Sanderson BW, Klein OD, Krumlauf R. Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning. Development, 2010, 137: 3221-3231.

[94]

Munne PM, Tummers M, Jarvinen E, Thesleff I, Jernvall J. Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction. Development, 2009, 136: 393-402.

[95]

Jarvinen E., Shimomura-Kuroki J., Balic A., Jussila M., Thesleff I. Mesenchymal Wnt/beta-catenin signaling limits tooth number. Development https://doi.org/10.1242/dev.158048 (2018).

[96]

Kawasaki M, . R-spondins/Lgrs expression in tooth development. Dev. Dynam, 2014, 243: 844-851.

[97]

Xu M, . WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated differentiation. Nat. Commun., 2017, 8

[98]

Hermans, F., Hemeryck, L., Lambrichts, I., Bronckaers, A. & Vankelecom H. Intertwined signaling pathways governing tooth development: a give-and-take between canonical Wnt and Shh. Front. Cell Dev. Biol. 9, 758203 (2021).

[99]

Sarkar L, . Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc. Natl Acad. Sci. USA, 2000, 97: 4520-4524.

[100]

Talaat DM, Hachim IY, Afifi MM, Talaat IM, ElKateb MA. Assessment of risk factors and molecular biomarkers in children with supernumerary teeth: a single-center study. BMC Oral. Health, 2022, 22

[101]

Seo H, . Upstream enhancer elements of Shh regulate oral and dental patterning. J. Dent. Res., 2018, 97: 1055-1063.

[102]

Sagai T. et al. SHH signaling directed by two oral epithelium-specific enhancers controls tooth and oral development. Sci Rep-UK 7,13004 (2017).

[103]

Seppala M, . Gas1 regulates patterning of the murine and human dentitions through Sonic Hedgehog. J. Dent. Res., 2022, 101: 473-482.

[104]

Seppala M, . Gas1 is a modifier for holoprosencephaly and genetically interacts with sonic hedgehog. J. Clin. Invest., 2007, 117: 1575-1584.

[105]

Cho SW, . Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth. Development, 2011, 138: 1807-1816.

[106]

Kim YY, . Genetic alterations in mesiodens as revealed by targeted next-generation sequencing and gene co-occurrence network analysis. Oral. Dis., 2017, 23: 966-972.

[107]

Jia S, . Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists. Dev. Biol., 2016, 420: 110-119.

[108]

Zhang ZY, Lan Y, Chai Y, Jiang RL. Antagonistic actions of Msx1 and Osr2 pattern mammalian teeth into a single row. Science, 2009, 323: 1232-1234.

[109]

Mikkola ML. Controlling the number of tooth rows. Sci. Signal, 2009, 2: pe53.

[110]

Kwon HE, Jia S, Lan Y, Liu H, Jiang R. Activin and Bmp4 signaling converge on Wnt activation during odontogenesis. J. Dent. Res., 2017, 96: 1145-1152.

[111]

Li L, . Exogenous fibroblast growth factor 8 rescues development of mouse diastemal vestigial tooth ex vivo. Dev. Dyn., 2011, 240: 1344-1353.

[112]

Klein OD, . Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev. Cell, 2006, 11: 181-190.

[113]

Peterkova R, . Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. J. Exp. Zool. Part B, 2009, 312b: 292-308.

[114]

Lu Y, . Molecular studies on the roles of Runx2 and Twist1 in regulating FGF signaling. Dev. Dyn., 2012, 241: 1708-1715.

[115]

Wu J. Y. et al. FAM20B-catalyzed glycosaminoglycans control murine tooth number by restricting FGFR2b signaling. BMC Biol. 18, 87 (2020).

[116]

Tian Y, . Inactivation of Fam20B in the dental epithelium of mice leads to supernumerary incisors. Eur. J. Oral. Sci., 2015, 123: 396-402.

[117]

Yang R., et al. Ectodysplasin A (EDA) signaling: from skin appendage to multiple diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms23168911 (2022).

[118]

Tucker AS, Headon DJ, Courtney JM, Overbeek P, Sharpe PT. The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Dev. Biol., 2004, 268: 185-194.

[119]

Kangas AT, Evans AR, Thesleff I, Jernvall J. Nonindependence of mammalian dental characters. Nature, 2004, 432: 211-214.

[120]

Haara O, . Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development, 2012, 139: 3189-3199.

[121]

Salomies L, Eymann J, Ollonen J, Khan I, Di-Poï N. The developmental origins of heterodonty and acrodonty as revealed by reptile dentitions. Sci. Adv., 2021, 7: eabj7912.

[122]

Yin W, Bian Z. The gene network underlying hypodontia. J. Dent. Res., 2015, 94: 878-885.

[123]

Nieminen P, . Identification of a nonsense mutation in the PAX9 gene in molar oligodontia. Eur. J. Hum. Genet., 2001, 9: 743-746.

[124]

Vieira AR, Meira R, Modesto A, Murray JC. MSX1, PAX9, and TGFA contribute to tooth agenesis in humans. J. Dent. Res., 2004, 83: 723-727.

[125]

Abdalla EM, Mostowska A, Jagodzinski PP, Dwidar K, Ismail SR. A novel WNT10A mutation causes non-syndromic hypodontia in an Egyptian family. Arch. Oral. Biol., 2014, 59: 722-728.

[126]

Zheng J, . Novel MSX1 variants identified in families with nonsyndromic oligodontia. Int J. Oral. Sci., 2021, 13: 2.

[127]

Yu M, Wong SW, Han D, Cai T. Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis. Oral. Dis., 2019, 25: 646-651.

[128]

Lu X, . A biological study of supernumerary teeth derived dental pulp stem cells based on RNA-seq analysis. Int. Endod. J., 2019, 52: 819-828.

[129]

Chu, K. Y. et al. Synergistic mutations of LRP6 and WNT10A in familial tooth agenesis. J. Pers Med. https://doi.org/10.3390/jpm11111217 (2021).

[130]

Yu M, . Distinct impacts of bi-allelic WNT10A mutations on the permanent and primary dentitions in odonto-onycho-dermal dysplasia. Am. J. Med. Genet A, 2019, 179: 57-64.

[131]

Yu P, . Mutations in WNT10B are identified in individuals with oligodontia. Am. J. Hum. Genet, 2016, 99: 195-201.

[132]

Daugherty RL, Gottardi CJ. Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiol. (Bethesda), 2007, 22: 303-309.

[133]

Chen X, . Mesenchymal Wnt/beta-catenin signaling induces Wnt and BMP antagonists in dental epithelium. Organogenesis, 2019, 15: 55-67.

[134]

Andl T, Reddy ST, Gaddapara T, Millar SE. WNT signals are required for the initiation of hair follicle development. Dev. Cell, 2002, 2: 643-653.

[135]

Dasgupta K. et al. R-Spondin 3 regulates mammalian dental and craniofacial development. J. Dev. Biol. https://doi.org/10.3390/jdb9030031 (2021).

[136]

Poelmans S, . Genotypic and phenotypic variation in six patients with solitary median maxillary central incisor syndrome. Am. J. Med. Genet A, 2015, 167A: 2451-2458.

[137]

Li J, Liu D, Liu Y, Zhang C, Zheng S. Solitary median maxillary central incisor syndrome: an exploration of the pathogenic mechanism. Front. Genet., 2022, 13: 780930.

[138]

Hardcastle Z, Mo R, Hui CC, Sharpe PT. The Shh signalling pathway in tooth development: defects in Gli2 and Gli3 mutants. Development, 1998, 125: 2803-2811.

[139]

Wang Y, . BMP activity is required for tooth development from the lamina to bud stage. J. Dent. Res., 2012, 91: 690-695.

[140]

Andl T, . Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development. Development, 2004, 131: 2257-2268.

[141]

Jia SH, . Roles of Bmp4 during tooth morphogenesis and sequential tooth formation. Development, 2013, 140: 423-432.

[142]

Ko SO, . Smad4 is required to regulate the fate of cranial neural crest cells. Dev. Biol., 2007, 312: 435-447.

[143]

Lee, J. M. et al. MSX1 drives tooth morphogenesis through controlling Wnt signaling activity. J. Dental Res. 101, 832–839 (2022).

[144]

Satokata I, Maas R. Msx1 deficient mice exhibit cleft-palate and abnormalities of craniofacial and tooth development. Nat. Genet, 1994, 6: 348-356.

[145]

Bei M, Maas R. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development, 1998, 125: 4325-4333.

[146]

Zhao X, . Transgenically ectopic expression of Bmp4 to the Msx1 mutant dental mesenchyme restores downstream gene expression but represses Shh and Bmp2 in the enamel knot of wild type tooth germ. Mech. Dev., 2000, 99: 29-38.

[147]

Bei M, Kratochwil K, Maas RL. BMP4 rescues a non-cell-autonomous function of Msx1 in tooth development. Development, 2000, 127: 4711-4718.

[148]

Ye X, Attaie AB. Genetic basis of nonsyndromic and syndromic tooth agenesis. J. Pediatr. Genet, 2016, 5: 198-208.

[149]

Rodrigues AS, . Association between craniofacial morphological patterns and tooth agenesis-related genes. Prog. Orthod., 2020, 21

[150]

Chen J, Lan Y, Baek JA, Gao Y, Jiang R. Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Dev. Biol., 2009, 334: 174-185.

[151]

Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev. Biol., 2014, 25-26: 11-21.

[152]

De Moerlooze L, . An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development, 2000, 127: 483-492.

[153]

Hosokawa R, . Epithelial-specific requirement of FGFR2 signaling during tooth and palate development. J. Exp. Zool. B Mol. Dev. Evol., 2009, 312B: 343-350.

[154]

Wang XP, . An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol., 2007, 5: e159.

[155]

Parveen, A. et al. Deleterious variants in WNT10A, EDAR, and EDA causing isolated and syndromic tooth agenesis: a structural perspective from molecular dynamics simulations. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20215282 (2019).

[156]

Zhou M, . Analyses of oligodontia phenotypes and genetic etiologies. Int J. Oral. Sci., 2021, 13: 32.

[157]

Arte S, Parmanen S, Pirinen S, Alaluusua S, Nieminen P. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS One, 2013, 8: e73705.

[158]

Zhang L, . Comparative analysis of rare EDAR mutations and tooth agenesis pattern in EDAR- and EDA-associated nonsyndromic oligodontia. Hum. Mutat., 2020, 41: 1957-1966.

[159]

Peters H, Neubuser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev., 1998, 12: 2735-2747.

[160]

Wang Y, Kong H, Mues G, D’Souza R. Msx1 mutations: how do they cause tooth agenesis?. J. Dent. Res., 2011, 90: 311-316.

[161]

Ogawa T, . Functional consequences of interactions between Pax9 and Msx1 genes in normal and abnormal tooth development. J. Biol. Chem., 2006, 281: 18363-18369.

[162]

Jia S, . Pax9’s interaction with the ectodysplasin signaling pathway during the patterning of dentition. Front Physiol., 2020, 11: 581843.

[163]

Kist R, . Reduction of Pax9 gene dosage in an allelic series of mouse mutants causes hypodontia and oligodontia. Hum. Mol. Genet, 2005, 14: 3605-3617.

[164]

Iurino DA, Sardella R. CT scanning analysis of Megantereon whitei (Carnivora, Machairodontinae) from Monte Argentario (Early Pleistocene, central Italy): evidence of atavistic teeth. Naturwissenschaften, 2014, 101: 1099-1106.

[165]

Klein OD, . Developmental disorders of the dentition: an update. Am. J. Med. Genet C. Semin Med. Genet, 2013, 163C: 318-332.

[166]

Lubinsky M, Kantaputra PN. Syndromes with supernumerary teeth. Am. J. Med. Genet A, 2016, 170: 2611-2616.

[167]

Madani M, Madani F. Gardner’s syndrome presenting with dental complaints. Arch. Iran. Med., 2007, 10: 535-539.

[168]

Panjwani S, Bagewadi A, Keluskar V, Arora S. Gardner’s syndrome. J. Clin. Imaging Sci., 2011, 1: 65.

[169]

Dinckan N, . Whole-exome sequencing identifies novel variants for tooth agenesis. J. Dent. Res., 2018, 97: 49-59.

[170]

Moosa S, . Autosomal-recessive mutations in MESD cause osteogenesis imperfecta. Am. J. Hum. Genet, 2019, 105: 836-843.

[171]

Yu M, . Lrp6 dynamic expression in tooth development and mutations in oligodontia. J. Dent. Res, 2021, 100: 415-422.

[172]

Lammi L, . Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am. J. Hum. Genet, 2004, 74: 1043-1050.

[173]

Hlouskova A, Bielik P, Bonczek O, Balcar VJ, Sery O. Mutations in AXIN2 gene as a risk factor for tooth agenesis and cancer: A review. Neuroendocrinol. Lett., 2017, 38: 131-137.

[174]

Kuchler EC, . Tooth agenesis association with self-reported family history of cancer. J. Dent. Res., 2013, 92: 149-155.

[175]

Bonczek O, Balcar VJ, Sery O. PAX9 gene mutations and tooth agenesis: a review. Clin. Genet, 2017, 92: 467-476.

[176]

Bhol C. S., Patil S., Sahu B. B., Patra S. K., Bhutia S. K. The clinical significance and correlative signaling pathways of paired box gene 9 in development and carcinogenesis. Bba-Rev Cancer. 1876,188561 (2021).

[177]

Longtin R. Chew on this: mutation may be responsible for tooth loss, colon cancer. J. Natl Cancer I, 2004, 96: 987-989.

[178]

Paranjyothi MV, . Tooth agenesis: a susceptible indicator for colorectal cancer?. J. Cancer Res. Ther., 2018, 14: 527-531.

[179]

Huang AH, Chen YK, Lin LM, Shieh TY, Chan AW. Isolation and characterization of dental pulp stem cells from a supernumerary tooth. J. Oral. Pathol. Med, 2008, 37: 571-574.

[180]

Kim YH, . Oncostatin M enhances osteogenic differentiation of dental pulp stem cells derived from supernumerary teeth. Biochem Biophys. Res. Commun., 2020, 529: 169-174.

[181]

Honda M, Sato M, Toriumi T. Characterization of coronal pulp cells and radicular pulp cells in human teeth. J. Endod., 2017, 43: S35-S39.

[182]

Laurikkala J, Kassai Y, Pakkasjarvi L, Thesleff I, Itoh N. Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev. Biol., 2003, 264: 91-105.

[183]

Kratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R. FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice. Genes Dev., 2002, 16: 3173-3185.

[184]

Charles C, . Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development, 2011, 138: 4063-4073.

[185]

Chen Y, Wang Z, Lin C, Hu X, Zhang Y. Activated epithelial FGF8 signaling induces fused supernumerary incisors. J. Dent. Res., 2022, 101: 458-464.

[186]

Ohazama A, . Primary cilia regulate Shh activity in the control of molar tooth number. Development, 2009, 136: 897-903.

[187]

Mustonen T, . Stimulation of ectodermal organ development by Ectodysplasin-A1. Dev. Biol., 2003, 259: 123-136.

[188]

Peterkova R, Lesot H, Viriot L, Peterka M. The supernumerary cheek tooth in tabby/EDA mice - a reminiscence of the premolar in mouse ancestors. Arch. Oral. Biol., 2005, 50: 219-225.

[189]

Peterkova R, Lesot H, Peterka M. Phylogenetic memory of developing mammalian dentition. J. Exp. Zool. Part B, 2006, 306b: 234-250.

[190]

Charles C, . Distinct impacts of Eda and Edar loss of function on the mouse dentition. PLoS One, 2009, 4: e4985.

[191]

Laugel-Haushalter V., et al. RSK2 is a modulator of craniofacial development. PLoS One 9, 0084343 (2014).

[192]

Zhang QH, . Loss of the Tg737 protein results in skeletal patterning defects. Dev. Dynam, 2003, 227: 78-90.

[193]

Saito K, . Loss of stemness, EMT, and supernumerary tooth formation in Cebpb(−/−)Runx2(+/−) murine incisors. Sci. Rep., 2018, 8

[194]

Kaufman MH, Chang HH, Shaw JP. Craniofacial abnormalities in homozygous small eye (Sey/Sey) embryos and newborn mice. J. Anat., 1995, 186: 607-617.

[195]

Danforth CH. The occurrence and genetic behavior of duplicate lower incisors in the mouse. Genetics, 1958, 43: 139-148.

[196]

Nakamura T, . Transcription factor epiprofin is essential for tooth morphogenesis by regulating epithelial cell fate and tooth number. J. Biol. Chem., 2008, 283: 4825-4833.

[197]

Chu EY, . Full spectrum of postnatal tooth phenotypes in a novel Irf6 cleft lip model. J. Dent. Res., 2016, 95: 1265-1273.

[198]

Kuraguchi M, . Adenomatous polyposis coli (APC) is required for normal development of skin and thymus. Plos Genet, 2006, 2: 1362-1374.

[199]

Cobourne MT, . Sonic hedgehog signalling inhibits palatogenesis and arrests tooth development in a mouse model of the nevoid basal cell carcinoma syndrome. Dev. Biol., 2009, 331: 38-49.

[200]

Pispa J, . Tooth patterning and enamel formation can be manipulated by misexpression of TNF receptor Edar. Dev. Dyn., 2004, 231: 432-440.

[201]

Zhao H, Oka K, Bringas P, Kaartinen V, Chai Y. TGF-beta type I receptor Alk5 regulates tooth initiation and mandible patterning in a type II receptor-independent manner. Dev. Biol., 2008, 320: 19-29.

[202]

Li CY, . alphaE-catenin inhibits YAP/TAZ activity to regulate signalling centre formation during tooth development. Nat. Commun., 2016, 7

[203]

Shimizu T, Han J, Asada Y, Okamoto H, Maeda T. Localization of am3 using EL congenic mouse strains. J. Dent. Res., 2005, 84: 315-319.

[204]

Wang XP, . Modulation of activin/bone morphogenetic protein signaling by follistatin is required for the morphogenesis of mouse molar teeth. Dev. Dynam, 2004, 231: 98-108.

[205]

Cascallana JL, . Ectoderm-targeted overexpression of the glucocorticoid receptor induces hypohidrotic ectodermal dysplasia. Endocrinology, 2005, 146: 2629-2638.

[206]

Symkhampha K, . Radiographic features of cleidocranial dysplasia on panoramic radiographs. Imaging Sci. Dent., 2021, 51: 271-278.

[207]

Mundlos S. Cleidocranial dysplasia: clinical and molecular genetics. J. Med. Genet, 1999, 36: 177-182.

[208]

Xue R, Zhang G, Chen X, Ye X. Cleidocranial dysplasia causing respiratory distress in neonates: a case report and literature review. Front Genet, 2021, 12: 696685.

[209]

Ryoo HM, Kang HY, Lee SK, Lee KE, Kim JW. RUNX2 mutations in cleidocranial dysplasia patients. Oral. Dis., 2010, 16: 55-60.

[210]

Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J. Rare Dis., 2009, 4

[211]

Gjorup H, Haubek D, Jacobsen P, Ostergaard JR. Nance-horan syndrome-the oral perspective on a rare disease. Am. J. Med. Genet A, 2017, 173: 88-98.

[212]

De Souza N, Chalakkal P, Martires S, Soares R. Oral manifestations of nance-horan syndrome: a report of a rare case. Contemp. Clin. Dent., 2019, 10: 174-177.

[213]

Seow WK, Brown JP, Romaniuk K. The Nance-Horan syndrome of dental anomalies, congenital cataracts, microphthalmia, and anteverted pinna: case report. Pediatr. Dent., 1985, 7: 307-311.

[214]

Ng D, . Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat. Genet, 2004, 36: 411-416.

[215]

Oberoi S, Winder AE, Johnston J, Vargervik K, Slavotinek AM. Case reports of oculofaciocardiodental syndrome with unusual dental findings. Am. J. Med. Genet A, 2005, 136: 275-277.

[216]

Ragge N, . Expanding the phenotype of the X-linked BCOR microphthalmia syndromes. Hum. Genet, 2019, 138: 1051-1069.

[217]

Brooks JK, Leonard CO, Coccaro PJ Jr. Opitz (BBB/G) syndrome: oral manifestations. Am. J. Med. Genet, 1992, 43: 595-601.

[218]

Hu CH, . A MID1 gene mutation in a patient with opitz G/BBB syndrome that altered the 3D structure of SPRY domain. Am. J. Med. Genet. Part A, 2012, 158a: 726-731.

[219]

Schweiger S, Schneider R. The MID1/PP2A complex: a key to the pathogenesis of Opitz BBB/G syndrome. Bioessays, 2003, 25: 356-366.

[220]

Patton MA, Afzal AR. Robinow syndrome. J. Med. Genet, 2002, 39: 305-310.

[221]

Mazzeu JF, . Clinical characterization of autosomal dominant and recessive variants of Robinow syndrome. Am. J. Med. Genet A, 2007, 143: 320-325.

[222]

van Genderen MM, Kinds GF, Riemslag FC, Hennekam RC. Ocular features in Rubinstein-Taybi syndrome: investigation of 24 patients and review of the literature. Br. J. Ophthalmol., 2000, 84: 1177-1184.

[223]

Stevens C. A. GeneReviews (Springer Nature, 1993).

[224]

Trippella G, . An early diagnosis of trichorhinophalangeal syndrome type 1: a case report and a review of literature. Ital. J. Pediatr., 2018, 44: 138.

[225]

Carrington PR, Chen H, Altick JA. Trichorhinophalangeal syndrome, type I. J. Am. Acad. Dermatol, 1994, 31: 331-336.

Funding

National Natural Science Foundation of China (National Science Foundation of China)(81771043, 81822012, 8206113022)

National Science and Technology Major Project of China (2016YFC1102705) Shanghai Academic Leader of Science and Technology Innovation Action Plan (20XD1424000) Shanghai Experimental Animal Research Project of Science and Technology Innovation Action Plan (201409006400)

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/