Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies

Yuangang Wu , Jiao Li , Yi Zeng , Wenchen Pu , Xiaoyu Mu , Kaibo Sun , Yong Peng , Bin Shen

International Journal of Oral Science ›› 2022, Vol. 14 ›› Issue (1) : 40

PDF
International Journal of Oral Science ›› 2022, Vol. 14 ›› Issue (1) : 40 DOI: 10.1038/s41368-022-00187-z
Review Article

Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies

Author information +
History +
PDF

Abstract

Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.

Cite this article

Download citation ▾
Yuangang Wu, Jiao Li, Yi Zeng, Wenchen Pu, Xiaoyu Mu, Kaibo Sun, Yong Peng, Bin Shen. Exosomes rewire the cartilage microenvironment in osteoarthritis: from intercellular communication to therapeutic strategies. International Journal of Oral Science, 2022, 14(1): 40 DOI:10.1038/s41368-022-00187-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Martel-Pelletier J, . Osteoarthritis. Nat. Rev. Dis. Prim., 2016, 2: 16072.

[2]

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet, 2019, 393: 1745-1759.

[3]

Guilak F, Nims RJ, Dicks A, Wu CL, Meulenbelt I. Osteoarthritis as a disease of the cartilage pericellular matrix. Matrix Biol., 2018, 71-72: 40-50.

[4]

Katz JN, Arant KR, Loeser RF. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA, 2021, 325: 568-578.

[5]

Chen D, . Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res., 2017, 5: 16044.

[6]

Collaborators GBDRF. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392: 1923-1994.

[7]

Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis. Nat. Rev. Rheumatol., 2016, 12: 92-101.

[8]

Bannuru RR, . OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr. Cartil., 2019, 27: 1578-1589.

[9]

Latourte A, Kloppenburg M, Richette P. Emerging pharmaceutical therapies for osteoarthritis. Nat. Rev. Rheumatol., 2020, 16: 673-688.

[10]

Steinert AF, . Major biological obstacles for persistent cell-based regeneration of articular cartilage. Arthritis Res. Ther., 2007, 9: 213.

[11]

Bendich I, . Antibiotic-laden bone cement use and revision risk after primary total knee arthroplasty in US veterans. J. Bone Jt. Surg. Am. Vol., 2020, 102: 1939-1947.

[12]

van Schie P, van Steenbergen LN, van Bodegom-Vos L, Nelissen R, Marang-van de Mheen PJ. Between-hospital variation in revision rates after total hip and knee arthroplasty in the Netherlands: directing quality-improvement initiatives. J. Bone Jt. Surg. Am., 2020, 102: 315-324.

[13]

Zhou Q, Cai Y, Jiang Y, Lin X. Exosomes in osteoarthritis and cartilage injury: advanced development and potential therapeutic strategies. Int J. Biol. Sci., 2020, 16: 1811-1820.

[14]

Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat. Rev. Rheumatol., 2015, 11: 35-44.

[15]

Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum., 2012, 64: 1697-1707.

[16]

Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020, 367: 640.

[17]

Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell, 2016, 164: 1226-1232.

[18]

Meldolesi J. Exosomes and ectosomes in intercellular communication. Curr. Biol., 2018, 28: R435-R444.

[19]

van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol, 2018, 19: 213-228.

[20]

Garikipati VNS, Shoja-Taheri F, Davis ME, Kishore R. Extracellular vesicles and the application of system biology and computational modeling in cardiac repair. Circ. Res, 2018, 123: 188-204.

[21]

Fan SJ, . Glutamine deprivation alters the origin and function of cancer cell exosomes. EMBO J., 2020, 39: e103009.

[22]

Liu S, . M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res. Cardiol., 2020, 115: 22.

[23]

Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J. Cell Biol., 2020, 219: e201904113.

[24]

Tobon-Arroyave SI, Celis-Mejia N, Cordoba-Hidalgo MP, Isaza-Guzman DM. Decreased salivary concentration of CD9 and CD81 exosome-related tetraspanins may be associated with the periodontal clinical status. J. Clin. Periodontol., 2019, 46: 470-480.

[25]

Reddy VS, Madala SK, Trinath J, Reddy GB. Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress Chaperones, 2018, 23: 441-454.

[26]

Paolicelli RC, Bergamini G, Rajendran L. Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience, 2019, 405: 148-157.

[27]

Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise-derived exosomes to treat metabolic diseases. Nat. Rev. Endocrinol., 2016, 12: 504-517.

[28]

Schoneberg J, Lee IH, Iwasa JH, Hurley JH. Reverse-topology membrane scission by the ESCRT proteins. Nat. Rev. Mol. Cell Biol., 2017, 18: 5-17.

[29]

Vietri M, Radulovic M, Stenmark H. The many functions of ESCRTs. Nat. Rev. Mol. Cell Biol., 2020, 21: 25-42.

[30]

Baietti MF, . Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol., 2012, 14: 677-685.

[31]

Stuffers S, Wegner CS, Stenmark H, Brech A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic, 2009, 10: 925-937.

[32]

Wei DH, . RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res., 2021, 31: 157-177.

[33]

Ostrowski M, . Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol., 2010, 12: 19-U61.

[34]

Song L, . KIBRA controls exosome secretion via inhibiting the proteasomal degradation of Rab27a. Nat. Commun., 2019, 10: 1639.

[35]

O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol., 2020, 21: 585-606.

[36]

Raimondo F, Morosi L, Chinello C, Magni F, Pitto M. Advances in membranous vesicle and exosome proteomics improving biological understanding and biomarker discovery. Proteomics, 2011, 11: 709-720.

[37]

Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell Vesicles 3 (2014).

[38]

Parada N, Romero-Trujillo A, Georges N, Alcayaga-Miranda F. Camouflage strategies for therapeutic exosomes evasion from phagocytosis. J. Adv. Res., 2021, 31: 61-74.

[39]

Huang Y, . Influence of species and processing parameters on recovery and content of brain tissue-derived extracellular vesicles. J. Extracellular Vesicles, 2020, 9: 1785746.

[40]

Toh WS, Lai RC, Hui JHP, Lim SK. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment. Semin. Cell Dev. Biol., 2017, 67: 56-64.

[41]

Asghar S, Litherland GJ, Lockhart JC, Goodyear CS, Crilly A. Exosomes in intercellular communication and implications for osteoarthritis. Rheumatology, 2020, 59: 57-68.

[42]

Di Nicola V. Degenerative osteoarthritis a reversible chronic disease. Regen. Ther., 2020, 15: 149-160.

[43]

Kolhe R, . Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci. Rep., 2017, 7

[44]

Xie F, . Role of microRNA, LncRNA, and exosomes in the progression of osteoarthritis: a review of recent literature. Orthop. Surg., 2020, 12: 708-716.

[45]

Lin Z, . Selective enrichment of microRNAs in extracellular matrix vesicles produced by growth plate chondrocytes. Bone, 2016, 88: 47-55.

[46]

Mitton E, Gohr CM, McNally MT, Rosenthal AK. Articular cartilage vesicles contain RNA. Biochem Biophys. Res. Commun., 2009, 388: 533-538.

[47]

Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal Transduct. Target Ther., 2016, 1: 15004.

[48]

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136: 215-233.

[49]

Ha M, Kim VN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15: 509-524.

[50]

Mao GP, . Exosomal miR-95-5p regulates chondrogenesis and cartilage degradation via histone deacetylase 2/8. J. Cell. Mol. Med., 2018, 22: 5354-5366.

[51]

Withrow, J. et al. Synovial fluid exosomal miRNA profiling of osteoarthritis patients and identification of synoviocyte-chondrocyte communication pathway. In ORS 2016 Annual Meeting, Poster 1350 (2016).

[52]

Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat. Rev. Mol. Cell Biol., 2018, 19: 143-157.

[53]

Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet., 2016, 17: 47-62.

[54]

Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22: 96-118.

[55]

Chen LL. Linking long noncoding RNA localization and function. Trends Biochem. Sci., 2016, 41: 761-772.

[56]

Tsai MC, . Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329: 689-693.

[57]

Tripathi V, . The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 2010, 39: 925-938.

[58]

Gong CG, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3‘ UTRs via Alu elements. Nature, 2011, 470: 284.

[59]

Du Z, . Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat. Commun., 2016, 7

[60]

Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell, 2018, 172: 393-407.

[61]

Xiao P, . LncRNA NEAT1 regulates chondrocyte proliferation and apoptosis via targeting miR-543/PLA2G4A axis. Hum. Cell, 2021, 34: 60-75.

[62]

Meng Y, Qiu SQ, Sun L, Zuo JL. Knockdown of exosome-mediated lnc-PVT1 alleviates lipopolysaccharide-induced osteoarthritis progression by mediating the HMGB1/TLR4/NF-kappa B pathway via miR-93-5p. Mol. Med. Rep., 2020, 22: 5313-5325.

[63]

Li J, Sun D, Pu W, Wang J, Peng Y. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer, 2020, 6: 319-336.

[64]

Cocquerelle C, Mascrez B, Hetuin D, Bailleul B. Missplicing yields circular Rna molecules. FASEB J., 1993, 7: 155-160.

[65]

Zhang J, . Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol., 2021, 39: 836-845.

[66]

Wu Y, . The therapeutic potential and role of miRNA, lncRNA, and circRNA in osteoarthritis. Curr. Gene Ther., 2019, 19: 255-263.

[67]

Li ZY, . Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol., 2015, 22: 256-264.

[68]

Zhang Y, . Circular intronic long noncoding RNAs. Mol. Cell, 2013, 51: 792-806.

[69]

Memczak S, . Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495: 333-338.

[70]

Hansen TB, . Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495: 384-388.

[71]

van Heesch S, . The translational landscape of the human heart. Cell, 2019, 178: 242-260.e229.

[72]

Li Q, . CircACC1 regulates assembly and activation of AMPK complex under metabolic stress. Cell Metab., 2019, 30: 157-173 e157.

[73]

Guo ZY, . Exosomal circ-BRWD1 contributes to osteoarthritis development through the modulation of miR-1277/TRAF6 axis. Arthritis Res. Ther., 2021, 23: 159.

[74]

Li S, Liu J, Liu S, Jiao W, Wang X. Mesenchymal stem cell-derived extracellular vesicles prevent the development of osteoarthritis via the circHIPK3/miR-124-3p/MYH9 axis. J. Nanobiotechnology, 2021, 19

[75]

Ni Z, . The exosome-like vesicles from osteoarthritic chondrocyte enhanced mature IL-1beta production of macrophages and aggravated synovitis in osteoarthritis. Cell Death Dis., 2019, 10

[76]

Tao SC, . Exosomes derived from miR-140-5p-overexpressing human synovial mesenchymal stem cells enhance cartilage tissue regeneration and prevent osteoarthritis of the knee in a rat model. Theranostics, 2017, 7: 180-195.

[77]

Wu JY, . miR-100-5p-abundant exosomes derived from infrapatellar fat pad MSCs protect articular cartilage and ameliorate gait abnormalities via inhibition of mTOR in osteoarthritis. Biomaterials, 2019, 206: 87-100.

[78]

Tan F, Wang D, Yuan Z. The fibroblast-like synoviocyte derived exosomal long non-coding RNA H19 alleviates osteoarthritis progression through the miR-106b-5p/TIMP2 axis. Inflammation, 2020, 43: 1498-1509.

[79]

Zeng, G. X., Deng, G., Xiao, S. L. & Li, F. Fibroblast-like synoviocytes-derived exosomal PCGEM1 accelerates IL-1 beta-induced apoptosis and cartilage matrix degradation by miR-142-5p/RUNX2 in chondrocytes. Immunol. Invest. 1–18 (2021).

[80]

Dai, J. et al. Osteoclast-derived exosomal let-7a-5p targets Smad2 to promote the hypertrophic differentiation of chondrocytes. Am. J. Physiol. Cell Physiol. (2020).

[81]

Cui Y, Luan J, Li H, Zhou X, Han J. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett., 2016, 590: 185-192.

[82]

Wang R, Xu B, Xu HG. TGF-beta 1 promoted chondrocyte proliferation by regulating Sp1 through MSC-exosomes derived miR-135b. Cell Cycle, 2018, 17: 2756-2765.

[83]

Liu Y, . MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis. Cell Cycle, 2018, 17: 2411-2422.

[84]

Mao GP, . Exosomes derived from miR-92a-3p-overexpressing human mesenchymal stem cells enhance chondrogenesis and suppress cartilage degradation via targeting WNT5A. Stem Cell Res. Ther., 2018, 9: 247.

[85]

Mouw JK, Ou GQ, Weaver VM. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol., 2014, 15: 771-785.

[86]

Latourte A, . Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis. Ann. Rheum. Dis., 2017, 76: 748-755.

[87]

Glasson SS, . Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature, 2005, 434: 644-648.

[88]

Little CB, . Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum., 2009, 60: 3723-3733.

[89]

Goldring MB. Update on the biology of the chondrocyte and new approaches to treating cartilage diseases. Best. Pr. Res. Clin. Rheumatol., 2006, 20: 1003-1025.

[90]

Feng XH, Lin X, Derynck R. Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J., 2000, 19: 5178-5193.

[91]

Kavurma MM, Khachigian LM. Sp1 inhibits proliferation and induces apoptosis in vascular smooth muscle cells by repressing p21WAF1/Cip1 transcription and cyclin D1-Cdk4-p21WAF1/Cip1 complex formation. J. Biol. Chem., 2003, 278: 32537-32543.

[92]

Zhang LQ, . Integrin-beta 1 regulates chondrocyte proliferation and apoptosis through the upregulation of GIT1 expression. Int. J. Mol. Med., 2015, 35: 1074-1080.

[93]

Chen P, Gu WL, Gong MZ, Wang J, Li DQ. GIT1 gene deletion delays chondrocyte differentiation and healing of tibial plateau fracture through suppressing proliferation and apoptosis of chondrocyte. Bmc Musculoskel. Dis., 2017, 18: 320.

[94]

Zheng Q, . Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat. Commun., 2016, 7

[95]

Wang Y, . Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid. Med. Cell Longev., 2019, 2019: 7954657.

[96]

Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci., 2015, 16: 26035-26054.

[97]

Li X, . Exosomes from human umbilical cord mesenchymal stem cells inhibit ROS production and cell apoptosis in human articular chondrocytes via the miR-100-5p/NOX4 axis. Cell Biol. Int., 2021, 45: 2096-2106.

[98]

Wang X, . Exosomes isolated from bone marrow mesenchymal stem cells exert a protective effect on osteoarthritis via lncRNA LYRM4-AS1-GRPR-miR-6515-5p. Front. Cell Dev. Biol., 2021, 9: 644380.

[99]

Zhu C, Shen K, Zhou W, Wu H, Lu Y. Exosome-mediated circ_0001846 participates in IL-1beta-induced chondrocyte cell damage by miR-149-5p-dependent regulation of WNT5B. Clin. Immunol., 2021, 232: 108856.

[100]

Ewers BJ, Dvoracek-Driksna D, Orth MW, Haut RC. The extent of matrix damage and chondrocyte death in mechanically traumatized articular cartilage explants depends on rate of loading. J. Orthop. Res., 2001, 19: 779-784.

[101]

Henrotin Y, . Production of active oxygen species by isolated human chondrocytes. Br. J. Rheumatol., 1993, 32: 562-567.

[102]

Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr. Cartil., 2003, 11: 747-755.

[103]

Beecher BR, Martin JA, Pedersen DR, Heiner AD, Buckwalter JA. Antioxidants block cyclic loading induced chondrocyte death. Iowa Orthop. J., 2007, 27: 1-8.

[104]

Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell, 2011, 147: 728-741.

[105]

Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum., 2010, 62: 791-801.

[106]

Sasaki H, . Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthritis Rheum., 2012, 64: 1920-1928.

[107]

Philp AM, Davis ET, Jones SW. Developing anti-inflammatory therapeutics for patients with osteoarthritis. Rheumatol., 2017, 56: 869-881.

[108]

Millerand M, Berenbaum F, Jacques C. Danger signals and inflammaging in osteoarthritis. Clin. Exp. Rheumatol., 2019, 37: 48-56.

[109]

Xie J, Huang Z, Yu X, Zhou L, Pei F. Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev., 2019, 46: 36-44.

[110]

Asghar S, . The synovial secretome contributes to cartilage pathology in osteoarthritis: a role for exosomes. Osteoarthr. Cartil., 2018, 26: S131-S132.

[111]

Kato T, . Exosomes from IL-1beta stimulated synovial fibroblasts induce osteoarthritic changes in articular chondrocytes. Arthritis Res. Ther., 2014, 16: R163.

[112]

Marques-Rocha JL, . Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J., 2015, 29: 3595-3611.

[113]

Zhou Y, . Exosomes derived from miR-126-3p-overexpressing synovial fibroblasts suppress chondrocyte inflammation and cartilage degradation in a rat model of osteoarthritis. Cell Death Disco., 2021, 7: 37.

[114]

Tao Y, . Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatol., 2017, 56: 1804-1813.

[115]

Li X, Zhou Q, Tao L, Yu C. MicroRNA-106a promotes cell migration and invasion by targeting tissue inhibitor of matrix metalloproteinase 2 in cervical cancer. Oncol. Rep., 2017, 38: 1774-1782.

[116]

Nakasa, T. et al. Exosome derived from osteoarthritis cartilage induces catabolic factor gene expressions in synovium. In ORS 2012 Annual Meeting, San Francisco, Poster No. 0708 (2012).

[117]

Xie JW, . Alpha defensin-1 attenuates surgically induced osteoarthritis in association with promoting M1 to M2 macrophage polarization. Osteoarthr. Cartil., 2021, 29: 1048-1059.

[118]

Sun Y, Zuo Z, Kuang Y. An emerging target in the battle against osteoarthritis: macrophage polarization. Int. J. Mol. Sci., 2020, 21: 8513.

[119]

Taylor PR, . Macrophage receptors and immune recognition. Annu Rev. Immunol., 2005, 23: 901-944.

[120]

Miao X, Leng X, Zhang Q. The current state of nanoparticle-induced macrophage polarization and reprogramming research. Int. J. Mol. Sci., 2017, 18: 336.

[121]

Zhang H, Cai D, Bai X. Macrophages regulate the progression of osteoarthritis. Osteoarthr. Cartil., 2020, 28: 555-561.

[122]

Topoluk N, . Amniotic mesenchymal stem cells mitigate osteoarthritis progression in a synovial macrophage-mediated in vitro explant coculture model. J. Tissue Eng. Regen. Med., 2018, 12: 1097-1110.

[123]

Wang R, Xu B. TGF-beta 1-modified MSC-derived exosomal miR-135b attenuates cartilage injury via promoting M2 synovial macrophage polarization by targeting MAPK6. Cell Tissue Res., 2021, 384: 113-127.

[124]

Domenis R, . Characterization of the proinflammatory profile of synovial fluid-derived exosomes of patients with osteoarthritis. Mediators Inflamm., 2017, 2017: 4814987.

[125]

Bai JY, . LncRNA MM2P-induced, exosome-mediated transfer of Sox9 from monocyte-derived cells modulates primary chondrocytes. Cell Death Dis., 2020, 11: 763.

[126]

Goldring SR, Goldring MB. Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage-bone crosstalk. Nat. Rev. Rheumatol., 2016, 12: 632-644.

[127]

Chen LZ, . Horizontal fissuring at the osteochondral interface: a novel and unique pathological feature in patients with obesity-related osteoarthritis. Ann. Rheum. Dis., 2020, 79: 811-818.

[128]

Yuan XL, . Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthr. Cartil., 2014, 22: 1077-1089.

[129]

Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol., 2012, 8: 665-673.

[130]

Sun W, . Osteoclast-derived microRNA-containing exosomes selectively inhibit osteoblast activity. Cell Disco., 2016, 2: 16015.

[131]

Sanchez C, . Subchondral bone osteoblasts induce phenotypic changes in human osteoarthritic chondrocytes. Osteoarthr. Cartil., 2005, 13: 988-997.

[132]

Ni Z, . Exosomes: roles and therapeutic potential in osteoarthritis. Bone Res., 2020, 8: 25.

[133]

Li Z, Huang Z, Bai L. Cell interplay in osteoarthritis. Front. Cell Dev. Biol., 2021, 9: 720477.

[134]

Wu X, Crawford R, Xiao Y, Mao X, Prasadam I. Osteoarthritic subchondral bone release exosomes that promote cartilage degeneration. Cells, 2021, 10: 251.

[135]

Liu J, . Exosomal transfer of osteoclast-derived miRNAs to chondrocytes contributes to osteoarthritis progression. Nat. Aging, 2021, 1: 368-384.

[136]

Simpson RJ, Lim JW, Moritz RL, Mathivanan S. Exosomes: proteomic insights and diagnostic potential. Expert Rev. Proteom., 2009, 6: 267-283.

[137]

Skriner K, Adolph K, Jungblut PR, Burmester GR. Association of citrullinated proteins with synovial exosomes. Arthritis Rheum., 2006, 54: 3809-14.

[138]

Zheng L, . Primary chondrocyte exosomes mediate osteoarthritis progression by regulating mitochondrion and immune reactivity. Nanomedicine, 2019, 14: 3193-3212.

[139]

Gao K, . Association between cytokines and exosomes in synovial fluid of individuals with knee osteoarthritis. Mod. Rheumatol., 2020, 30: 758-764.

[140]

Zhang SP, . MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials, 2018, 156: 16-27.

[141]

Leung K, . Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the osteoarthritis initiative. Radiology, 2020, 296: 584-593.

[142]

Kijowski R, Demehri S, Roemer F, Guermazi A. Osteoarthritis year in review 2019: imaging. Osteoarthr. Cartil., 2020, 28: 285-295.

[143]

Hao HQ, Zhang JF, He QQ, Wang Z. Cartilage oligomeric matrix protein, C-terminal cross-linking telopeptide of type II collagen, and matrix metalloproteinase-3 as biomarkers for knee and hip osteoarthritis (OA) diagnosis: a systematic review and meta-analysis. Osteoarthr. Cartil., 2019, 27: 726-736.

[144]

Huang ZY, . Biomarkers of inflammation - LBP and TLR- predict progression of knee osteoarthritis in the DOXY clinical trial. Osteoarthr. Cartil., 2018, 26: 1658-1665.

[145]

Mobasheri A, Bay-Jensen AC, van Spil WE, Larkin J, Levesque MC. Osteoarthritis Year in Review 2016: biomarkers (biochemical markers). Osteoarthr. Cartil., 2017, 25: 199-208.

[146]

Liu CG, . MicroRNA-135a in ABCA1-labeled exosome is a serum biomarker candidate for Alzheimer’s disease. Biomed. Environ. Sci., 2021, 34: 19-28.

[147]

Soares Martins T, . Diagnostic and therapeutic potential of exosomes in Alzheimer’s disease. J. Neurochem., 2021, 156: 162-181.

[148]

Hamlett ED, . Exosomal biomarkers in Down syndrome and Alzheimer’s disease. Free Radic. Biol. Med., 2018, 114: 110-121.

[149]

Zamani P, Fereydouni N, Butler AE, Navashenaq JG, Sahebkar A. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc. Med., 2019, 29: 313-323.

[150]

Zhang Y, Hu YW, Zheng L, Wang Q. Characteristics and roles of exosomes in cardiovascular disease. DNA Cell Biol., 2017, 36: 202-211.

[151]

Barile L, Vassalli G. Exosomes: therapy delivery tools and biomarkers of diseases. Pharm. Ther., 2017, 174: 63-78.

[152]

Yang D, . Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics, 2020, 10: 3684-3707.

[153]

Jiang C, . MicroRNA-26a negatively regulates toll-like receptor 3 expression of rat macrophages and ameliorates pristane induced arthritis in rats. Arthritis Res. Ther., 2014, 16: R9.

[154]

Kolhe R, . Sex-specific differences in extracellular vesicle protein cargo in synovial fluid of patients with osteoarthritis. Life, 2020, 10: 337.

[155]

Zhao Y, Xu J. Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis. Int. Orthop., 2018, 42: 2865-2872.

[156]

Ali SA, . Sequencing identifies a distinct signature of circulating microRNAs in early radiographic knee osteoarthritis. Osteoarthr. Cartil., 2020, 28: 1471-1481.

[157]

Beyer C, . Signature of circulating microRNAs in osteoarthritis. Ann. Rheum. Dis., 2015, 74: e18.

[158]

Chen X, . Mesenchymal stem cell-derived exosomal microRNA-136-5p inhibits chondrocyte degeneration in traumatic osteoarthritis by targeting ELF3. Arthritis Res. Ther., 2020, 22: 256.

[159]

Jin Z, Ren JA, Qi SL. Exosomal miR-9-5p secreted by bone marrow-derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1. Cell Tissue Res., 2020, 381: 99-114.

[160]

Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis. Nat. Rev. Rheumatol., 2012, 8: 543-552.

[161]

Lin T, . Inhibition of chondrocyte apoptosis in a rat model of osteoarthritis by exosomes derived from miR‑140‑5p‑overexpressing human dental pulp stem cells. Int J. Mol. Med., 2021, 47: 7.

[162]

Liang YJ, . Chondrocyte-targeted microRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy. Acs Appl Mater. Interfaces, 2020, 12: 36938-36947.

[163]

Liu X, . Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale, 2017, 9: 4430-4438.

[164]

Chen P, . Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics, 2019, 9: 2439-2459.

[165]

Liu Y, . Exosomes derived from human urine-derived stem cells overexpressing miR-140-5p alleviate knee osteoarthritis through downregulation of VEGFA in a rat model. Am. J. Sports Med., 2022, 50: 1088-1105.

[166]

Sun H, . Expression of exosomal microRNAs during chondrogenic differentiation of human bone mesenchymal stem cells. J. Cell Biochem., 2019, 120: 171-181.

[167]

Jin Z, Ren J, Qi S. Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int. Immunopharmacol., 2020, 78: 105946.

[168]

Song J, Kang Y, Chun C-H, Jin E-J. Selective loading of exosomal HULC and miR-372 is responsible for chondrocyte death during OA pathogenesis. Anim. Cells Syst., 2017, 21: 397-403.

[169]

Dong J, Li L, Fang X, Zang M. Exosome-encapsulated microRNA-127-3p released from bone marrow-derived mesenchymal stem cells alleviates osteoarthritis through regulating CDH11-mediated Wnt/beta-catenin pathway. J. Pain. Res., 2021, 14: 297-310.

[170]

Huang Y, . Bone marrow mesenchymal stem cell-derived exosomal miR-206 promotes osteoblast proliferation and differentiation in osteoarthritis by reducing Elf3. J. Cell Mol. Med., 2021, 25: 7734-7745.

[171]

Kim M, Shin DI, Choi BH, Min BH. Exosomes from IL-1beta-primed mesenchymal stem cells inhibited IL-1beta- and TNF-alpha-mediated inflammatory responses in osteoarthritic SW982 cells. Tissue Eng. Regen. Med., 2021, 18: 525-536.

[172]

Qiu M, Liu D, Fu Q. MiR-129-5p shuttled by human synovial mesenchymal stem cell-derived exosomes relieves IL-1 beta induced osteoarthritis via targeting HMGB1. Life Sci., 2021, 269: 118987.

[173]

Tao Y, . Human bone mesenchymal stem cells-derived exosomal miRNA-361-5p alleviates osteoarthritis by downregulating DDX20 and inactivating the NF-kappaB signaling pathway. Bioorg. Chem., 2021, 113: 104978.

[174]

Meng F, . MicroRNA-193b-3p regulates chondrogenesis and chondrocyte metabolism by targeting HDAC3. Theranostics, 2018, 8: 2862-2883.

[175]

Liu Y, . Exosomal KLF3-AS1 from hMSCs promoted cartilage repair and chondrocyte proliferation in osteoarthritis. Biochem. J., 2018, 475: 3629-3638.

[176]

Yang Q, . LncRNA H19 secreted by umbilical cord blood mesenchymal stem cells through microRNA-29a-3p/FOS axis for central sensitization of pain in advanced osteoarthritis. Am. J. Transl. Res., 2021, 13: 1245-1256.

[177]

Mao G, . Exosome-transported circRNA_0001236 enhances chondrogenesis and suppress cartilage degradation via the miR-3677-3p/Sox9 axis. Stem Cell Res. Ther., 2021, 12: 389.

[178]

Tao SC, . Small extracellular vesicles in combination with sleep-related circRNA3503: A targeted therapeutic agent with injectable thermosensitive hydrogel to prevent osteoarthritis. Bioact. Mater., 2021, 6: 4455-4469.

Funding

National Natural Science Foundation of China (National Science Foundation of China)(81974347)

China Postdoctoral Science Foundation(2021M702351)

Health Department of Sichuan Province (Sichuan Province Department of Health)(21PJ040)

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/