Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system

Liangjing Xin , Fuyuan Zhou , Chuangwei Zhang , Wenjie Zhong , Shihan Xu , Xuan Jing , Dong Wang , Si Wang , Tao Chen , Jinlin Song

International Journal of Oral Science ›› 2022, Vol. 14 ›› Issue (1) : 27

PDF
International Journal of Oral Science ›› 2022, Vol. 14 ›› Issue (1) : 27 DOI: 10.1038/s41368-022-00177-1
Article

Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system

Author information +
History +
PDF

Abstract

Periodontitis is a widespread oral disease characterized by continuous inflammation of the periodontal tissue and an irreversible alveolar bone loss, which eventually leads to tooth loss. Four-octyl itaconate (4-OI) is a cell-permeable itaconate derivative and has been recognized as a promising therapeutic target for the treatment of inflammatory diseases. Here, we explored, for the first time, the protective effect of 4-OI on inhibiting periodontal destruction, ameliorating local inflammation, and the underlying mechanism in periodontitis. Here we showed that 4-OI treatment ameliorates inflammation induced by lipopolysaccharide in the periodontal microenvironment. 4-OI can also significantly alleviate inflammation and alveolar bone loss via Nrf2 activation as observed on samples from experimental periodontitis in the C57BL/6 mice. This was further confirmed as silencing Nrf2 blocked the antioxidant effect of 4-OI by downregulating the expression of downstream antioxidant enzymes. Additionally, molecular docking simulation indicated the possible mechanism under Nrf2 activation. Also, in Nrf2−/− mice, 4-OI treatment did not protect against alveolar bone dysfunction due to induced periodontitis, which underlined the importance of the Nrf2 in 4-OI mediated periodontitis treatment. Our results indicated that 4-OI attenuates inflammation and oxidative stress via disassociation of KEAP1-Nrf2 and activation of Nrf2 signaling cascade. Taken together, local administration of 4-OI offers clinical potential to inhibit periodontal destruction, ameliorate local inflammation for more predictable periodontitis.

Cite this article

Download citation ▾
Liangjing Xin, Fuyuan Zhou, Chuangwei Zhang, Wenjie Zhong, Shihan Xu, Xuan Jing, Dong Wang, Si Wang, Tao Chen, Jinlin Song. Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system. International Journal of Oral Science, 2022, 14(1): 27 DOI:10.1038/s41368-022-00177-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat. Rev. Dis. Prim., 2017, 3: 17038.

[2]

Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet (Lond., Engl.), 2005, 366: 1809-1820.

[3]

Yamada H, Nakajima T, Domon H, Honda T, Yamazaki K. Endoplasmic reticulum stress response and bone loss in experimental periodontitis in mice. J. Periodontal Res., 2015, 50: 500-508.

[4]

Allen EM, Matthews JB, DJ OH, Griffiths HR, Chapple IL. Oxidative and inflammatory status in Type 2 diabetes patients with periodontitis. J. Clin. Periodontol., 2011, 38: 894-901.

[5]

Hajishengallis G, Chavakis T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol., 2021, 21: 426-440.

[6]

Li X, Kolltveit KM, Tronstad L, Olsen I. Systemic diseases caused by oral infection. Clin. Microbiol. Rev., 2000, 13: 547-558.

[7]

Schenkein HA, Papapanou PN, Genco R, Sanz M. Mechanisms underlying the association between periodontitis and atherosclerotic disease. Periodontology, 2020, 83: 90-106.

[8]

Choi SE, Sima C, Pandya A. Impact of treating oral disease on preventing vascular diseases: a model-based cost-effectiveness analysis of periodontal treatment among patients with type 2 diabetes. Diabetes Care, 2020, 43: 563-571.

[9]

Hajishengallis G, Lambris JD. Complement-targeted therapeutics in periodontitis. Adv. Exp. Med. Biol., 2013, 735: 197-206.

[10]

Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano, 2018, 12: 8882-8892.

[11]

Chen FM, Jin Y. Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng. Part B Rev., 2010, 16: 219-255.

[12]

Nabet BY, . Exosome RNA unshielding couples stromal activation to pattern recognition receptor signaling in cancer. Cell, 2017, 170: 352-366.e313.

[13]

Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell, 2010, 140: 805-820.

[14]

Van den Bossche J, . Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep., 2016, 17: 684-696.

[15]

Saravanakumar G, Kim J, Kim WJ. Reactive-oxygen-species-responsive drug delivery systems: promises and challenges. Adv. Sci., 2017, 4: 1600124.

[16]

Sczepanik FSC, . Periodontitis is an inflammatory disease of oxidative stress: we should treat it that way. Periodontology, 2020, 84: 45-68.

[17]

Chiu AV, Saigh MA, McCulloch CA, Glogauer M. The role of NrF2 in the regulation of periodontal health and disease. J. Dent. Res., 2017, 96: 975-983.

[18]

Wang GP. Defining functional signatures of dysbiosis in periodontitis progression. Genome Med., 2015, 7

[19]

Hirschfeld, J., White, P. C., Milward, M. R., Cooper, P. R. & Chapple, I. L. C. Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria. Infection immunity 85, e00297-17 (2017).

[20]

Mjaavatten MD, Bykerk VP. Early rheumatoid arthritis: the performance of the 2010 ACR/EULAR criteria for diagnosing RA. Best. Pract. Res. Clin. Rheumatol., 2013, 27: 451-466.

[21]

Sfyroeras GS, Roussas N, Saleptsis VG, Argyriou C, Giannoukas AD. Association between periodontal disease and stroke. J. Vasc. Surg., 2012, 55: 1178-1184.

[22]

Fine N, . Distinct oral neutrophil subsets define health and periodontal disease states. J. Dent. Res., 2016, 95: 931-938.

[23]

Chen M, . Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol., 2019, 46: 608-622.

[24]

Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med., 2009, 47: 1304-1309.

[25]

Sima C, . Nuclear factor erythroid 2-related factor 2 down-regulation in oral neutrophils is associated with periodontal oxidative damage and severe chronic periodontitis. Am. J. Pathol., 2016, 186: 1417-1426.

[26]

Mills EL, . Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature, 2018, 556: 113-117.

[27]

Zheng Y, . Four-octyl itaconate activates Nrf2 cascade to protect osteoblasts from hydrogen peroxide-induced oxidative injury. Cell Death Dis., 2020, 11: 772.

[28]

Xin Y, Zou L, Lang S. 4-Octyl itaconate (4-OI) attenuates lipopolysaccharide-induced acute lung injury by suppressing PI3K/Akt/NF-κB signaling pathways in mice. Exp. Ther. Med., 2021, 21: 141.

[29]

Zhuang Z, . Induction of M2 macrophages prevents bone loss in murine periodontitis models. J. Dent. Res., 2019, 98: 200-208.

[30]

Ivashkiv LB. Epigenetic regulation of macrophage polarization and function. Trends Immunol., 2013, 34: 216-223.

[31]

Liao ST, . 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects. Nat. Commun., 2019, 10

[32]

Qiao W, . Sequential activation of heterogeneous macrophage phenotypes is essential for biomaterials-induced bone regeneration. Biomaterials, 2021, 276: 121038.

[33]

Andreev D, . Osteocyte necrosis triggers osteoclast-mediated bone loss through macrophage-inducible C-type lectin. J. Clin. Investig., 2020, 130: 4811-4830.

[34]

Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol., 2007, 7: 292-304.

[35]

Trauelsen M, . Extracellular succinate hyperpolarizes M2 macrophages through SUCNR1/GPR91-mediated Gq signaling. Cell Rep., 2021, 35: 109246.

[36]

Xu M, . Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARγ dependent manner. Front. Immunol., 2021, 12: 618501.

[37]

Li Y, . 4-Octyl Itaconate alleviates lipopolysaccharide-induced acute lung injury in mice by inhibiting oxidative stress and inflammation. Drug Des. Dev. Ther., 2020, 14: 5547-5558.

[38]

Kato H, Taguchi Y, Tominaga K, Umeda M, Tanaka A. Porphyromonas gingivalis LPS inhibits osteoblastic differentiation and promotes pro-inflammatory cytokine production in human periodontal ligament stem cells. Arch. Oral. Biol., 2014, 59: 167-175.

[39]

Li R, Zhang P, Wang Y, Tao K. Itaconate: a metabolite regulates inflammation response and oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020: 5404780.

[40]

Sun X, . Octyl itaconate inhibits osteoclastogenesis by suppressing Hrd1 and activating Nrf2 signaling. FASEB J., 2019, 33: 12929-12940.

[41]

Liu H, . Four-octyl itaconate activates Keap1-Nrf2 signaling to protect neuronal cells from hydrogen peroxide. Cell Commun. Signal., 2018, 16: 81.

[42]

Tang C, Tan S, Zhang Y, Dong L, Xu Y. Activation of Keap1-Nrf2 signaling by 4-octyl itaconate protects human umbilical vein endothelial cells from high glucose. Biochem. Biophys. Res. Commun., 2019, 508: 921-927.

[43]

Kobayashi EH, . Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat. Commun., 2016, 7

[44]

Weng Y, . Trem2 mediated Syk-dependent ROS amplification is essential for osteoclastogenesis in periodontitis microenvironment. Redox Biol., 2021, 40: 101849.

[45]

Wei W, . Activation of the STAT1 pathway accelerates periodontitis in Nos3(-/-) mice. J. Dent. Res., 2019, 98: 1027-1036.

[46]

Xin L, . Histological and histomorphometric evaluation of applying a bioactive advanced platelet-rich fibrin to a perforated schneiderian membrane in a maxillary sinus elevation model. Front. Bioeng. Biotechnol., 2020, 8: 600032.

[47]

He Y, . CoCl(2) induces apoptosis via a ROS-dependent pathway and Drp1-mediated mitochondria fission in periodontal ligament stem cells. Am. J. Physiol. Cell Physiol., 2018, 315: C389-c397.

[48]

Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins, 2003, 52: 609-623.

[49]

Pettersen EF, . UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25: 1605-1612.

Funding

National Natural Science Foundation of China (National Science Foundation of China)(31971282, 81771082)

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/