Oral microbiota in human systematic diseases
Xian Peng , Lei Cheng , Yong You , Chengwei Tang , Biao Ren , Yuqing Li , Xin Xu , Xuedong Zhou
International Journal of Oral Science ›› 2022, Vol. 14 ›› Issue (1) : 14
Oral microbiota in human systematic diseases
Oral bacteria directly affect the disease status of dental caries and periodontal diseases. The dynamic oral microbiota cooperates with the host to reflect the information and status of immunity and metabolism through two-way communication along the oral cavity and the systemic organs. The oral cavity is one of the most important interaction windows between the human body and the environment. The microenvironment at different sites in the oral cavity has different microbial compositions and is regulated by complex signaling, hosts, and external environmental factors. These processes may affect or reflect human health because certain health states seem to be related to the composition of oral bacteria, and the destruction of the microbial community is related to systemic diseases. In this review, we discussed emerging and exciting evidence of complex and important connections between the oral microbes and multiple human systemic diseases, and the possible contribution of the oral microorganisms to systemic diseases. This review aims to enhance the interest to oral microbes on the whole human body, and also improve clinician’s understanding of the role of oral microbes in systemic diseases. Microbial research in dentistry potentially enhances our knowledge of the pathogenic mechanisms of oral diseases, and at the same time, continuous advances in this frontier field may lead to a tangible impact on human health.
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
Zhang, Z. et al. Porphyromonas gingivalis outer membrane vesicles inhibit the invasion of Fusobacterium nucleatum into oral epithelial cells by downregulating FadA and FomA. J. Periodontol. https://doi.org/10.1002/JPER.21-0144 (2021). |
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
Qi, Y. et al. New insights into the role of oral microbiota dysbiosis in the pathogenesis of inflammatory bowel disease. Digest. Dis. Sci. 67, 42–55 (2022). |
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
Liu, S. et al. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack. J. Immunol. 205, 282–289 (2020). |
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
Stasiewicz, M. & Karpinski, T. M. The oral microbiota and its role in carcinogenesis. Semin. Cancer Biol. (2021). |
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
Torres, P. J. et al. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ 3, e1373 (2015). |
| [120] |
|
| [121] |
|
| [122] |
Pignatelli, P. et al. The potential of colonic tumor tissue Fusobacterium nucleatum to predict staging and its interplay with oral abundance in colon cancer patients. Cancers 13, 1032 (2021). |
| [123] |
Todd, S. M., Settlage, R. E., Lahmers, K. K. & Slade, D. J. Fusobacterium genomics using MinION and illumina sequencing enables genome completion and correction. mSphere 3, e00269–18 (2018). |
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
Association, A. D., Vol. Suppl 1, 1–2 (American Diabetes Association, Diabetes Care; 2019). |
| [162] |
|
| [163] |
|
| [164] |
Matsha, T. et al. Oral microbiome signatures in diabetes mellitus and periodontal disease. J. Dent. Res. 99, 658–665 (2020). |
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
|
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
|
| [185] |
|
| [186] |
|
| [187] |
|
| [188] |
|
| [189] |
|
| [190] |
|
National Natural Science Foundation of China (National Science Foundation of China)(81870754, 32070120)
/
| 〈 |
|
〉 |