Oral microbiota in human systematic diseases

Xian Peng , Lei Cheng , Yong You , Chengwei Tang , Biao Ren , Yuqing Li , Xin Xu , Xuedong Zhou

International Journal of Oral Science ›› 2022, Vol. 14 ›› Issue (1) : 14

PDF
International Journal of Oral Science ›› 2022, Vol. 14 ›› Issue (1) : 14 DOI: 10.1038/s41368-022-00163-7
Review Article

Oral microbiota in human systematic diseases

Author information +
History +
PDF

Abstract

Oral bacteria directly affect the disease status of dental caries and periodontal diseases. The dynamic oral microbiota cooperates with the host to reflect the information and status of immunity and metabolism through two-way communication along the oral cavity and the systemic organs. The oral cavity is one of the most important interaction windows between the human body and the environment. The microenvironment at different sites in the oral cavity has different microbial compositions and is regulated by complex signaling, hosts, and external environmental factors. These processes may affect or reflect human health because certain health states seem to be related to the composition of oral bacteria, and the destruction of the microbial community is related to systemic diseases. In this review, we discussed emerging and exciting evidence of complex and important connections between the oral microbes and multiple human systemic diseases, and the possible contribution of the oral microorganisms to systemic diseases. This review aims to enhance the interest to oral microbes on the whole human body, and also improve clinician’s understanding of the role of oral microbes in systemic diseases. Microbial research in dentistry potentially enhances our knowledge of the pathogenic mechanisms of oral diseases, and at the same time, continuous advances in this frontier field may lead to a tangible impact on human health.

Cite this article

Download citation ▾
Xian Peng, Lei Cheng, Yong You, Chengwei Tang, Biao Ren, Yuqing Li, Xin Xu, Xuedong Zhou. Oral microbiota in human systematic diseases. International Journal of Oral Science, 2022, 14(1): 14 DOI:10.1038/s41368-022-00163-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Miller WD. The human mouth as a focus of infection. Lancet, 1891, 138: 340-342.

[2]

Billings F. Chronic focal infections and their etiologic relations to arthritis and nephritis. Arch. Intern. Med., 1912, IX: 484-498.

[3]

Read E, Curtis MA, Neves JF. The role of oral bacteria in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2021, 18: 731-742.

[4]

Tuominen H, Rautava J. Oral microbiota and cancer development. Pathobiology, 2021, 88: 116-126.

[5]

Li Y, . Oral, tongue-coating microbiota, and metabolic disorders: a novel area of interactive research. Front. Cardiovasc. Med., 2021, 8: 730203.

[6]

Kamer AR, . Periodontal dysbiosis associates with reduced CSF Abeta42 in cognitively normal elderly. Alzheimers Dement. (Amst.), 2021, 13: e12172.

[7]

Matsha TE, . Oral microbiome signatures in diabetes mellitus and periodontal disease. J. Dent. Res., 2020, 99: 658-665.

[8]

Huang Z, . Faecal microbiota transplantation from metabolically compromised human donors accelerates osteoarthritis in mice. Ann. Rheum. Dis., 2020, 79: 646-656.

[9]

Gomez LA, . Porphyromonas gingivalis placental atopobiosis and inflammatory responses in women with adverse pregnancy outcomes. Front. Microbiol., 2020, 11: 591626.

[10]

Xian P, . The oral microbiome bank of China. Int J. Oral. Sci., 2018, 10: 16.

[11]

Turnbaugh PJ, . The human microbiome project. Nature, 2007, 449: 804-810.

[12]

Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontology, 2021, 86: 157-187.

[13]

Hajishengallis G, Hasturk H, Lambris JD, Contributing authors. C3-targeted therapy in periodontal disease: moving closer to the clinic. Trends Immunol., 2021, 42: 856-864.

[14]

Zuza EC, . Evaluation of recurrence of periodontal disease after treatment in obese and normal weight patients: two-year follow-up. J. Periodontol., 2020, 91: 1123-1131.

[15]

Nejman D, . The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science, 2020, 368: 973-980.

[16]

Yete S, D’Souza W, Saranath D. High-risk human papillomavirus in oral cancer: clinical implications. Oncology, 2018, 94: 133-141.

[17]

Diaz P, Valenzuela Valderrama M, Bravo J, Quest AFG. Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front. Microbiol., 2018, 9: 5.

[18]

Alshamsan A, Khan S, Imran A, Aljuffali IA, Alsaleh K. Prediction of Chlamydia pneumoniae protein localization in host mitochondria and cytoplasm and possible involvements in lung cancer etiology: a computational approach. Saudi Pharm. J., 2017, 25: 1151-1157.

[19]

Shukla SK, Singh G, Shahi KS, Bhuvan, Pant P. Staging, treatment, and future approaches of gallbladder carcinoma. J. Gastrointest. Cancer, 2018, 49: 9-15.

[20]

Jans C, Boleij A. The road to infection: host-microbe interactions defining the pathogenicity of Streptococcus bovis/Streptococcus equinus complex members. Front. Microbiol., 2018, 9: 603.

[21]

Haghi F, Goli E, Mirzaei B, Zeighami H. The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer, 2019, 19

[22]

Yu T, . Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 2017, 170: 548-563 e516.

[23]

Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer, 2018, 18: 727-743.

[24]

Graves DT, Correa JD, Silva TA. The oral microbiota is modified by systemic diseases. J. Dent. Res., 2019, 98: 148-156.

[25]

Gao L, . Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell, 2018, 9: 488-500.

[26]

Jia X, . Berberine ameliorates periodontal bone loss by regulating gut microbiota. J. Dent. Res., 2019, 98: 107-116.

[27]

Bourgeois D, Inquimbert C, Ottolenghi L, Carrouel F. Periodontal pathogens as risk factors of cardiovascular diseases, diabetes, rheumatoid arthritis, cancer, and chronic obstructive pulmonary disease-is there cause for consideration?. Microorganisms, 2019, 7: 424.

[28]

Engevik MA, . Fusobacterium nucleatum secretes outer membrane vesicles and promotes intestinal inflammation. mBio, 2021, 12: e02706-e02720.

[29]

Hashioka S, . Implications of systemic inflammation and periodontitis for major depression. Front. Neurosci., 2018, 12: 483.

[30]

Dawes C, Wong DTW. Role of saliva and salivary diagnostics in the advancement of oral health. J. Dent. Res., 2019, 98: 133-141.

[31]

Li B, . Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. Int. J. Oral. Sci., 2019, 11: 10.

[32]

Qiao Y, Ran Z. Potential influential factors on incidence and prevalence of inflammatory bowel disease in mainland China. JGH Open, 2020, 4: 11-15.

[33]

Cohen LJ, Cho JH, Gevers D, Chu H. Genetic factors and the intestinal microbiome guide development of microbe-based therapies for inflammatory bowel diseases. Gastroenterology, 2019, 156: 2174-2189.

[34]

Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. J. Allergy Clin. Immunol., 2020, 145: 16-27.

[35]

Falcao A, Bullon P. A review of the influence of periodontal treatment in systemic diseases. Periodontology, 2019, 79: 117-128.

[36]

Zhang, Z. et al. Porphyromonas gingivalis outer membrane vesicles inhibit the invasion of Fusobacterium nucleatum into oral epithelial cells by downregulating FadA and FomA. J. Periodontol. https://doi.org/10.1002/JPER.21-0144 (2021).

[37]

Kato T, . Oral administration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome. mSphere, 2018, 3: e00460-00418.

[38]

Liu H, . Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J. Dig. Dis., 2020, 21: 385-398.

[39]

Li Y, Shao F, Zheng S, Tan Z, He Y. Alteration of Streptococcus salivarius in buccal mucosa of oral lichen planus and controlled clinical trial in OLP treatment. Probiot. Antimicrob. Proteins, 2020, 12: 1340-1348.

[40]

Yin W, . Inverse association between poor oral health and inflammatory bowel diseases. Clin. Gastroenterol. Hepatol., 2017, 15: 525-531.

[41]

Ito S, . Specific strains of Streptococcus mutans, a pathogen of dental caries, in the tonsils, are associated with IgA nephropathy. Sci. Rep., 2019, 9

[42]

Qi, Y. et al. New insights into the role of oral microbiota dysbiosis in the pathogenesis of inflammatory bowel disease. Digest. Dis. Sci. 67, 42–55 (2022).

[43]

Xiao J, Fiscella KA, Gill SR. Oral microbiome: possible harbinger for children’s health. Int. J. Oral Sci., 2020, 12: 12.

[44]

Xun Z, Zhang Q, Xu T, Chen N, Chen F. Dysbiosis and ecotypes of the salivary microbiome associated with inflammatory bowel diseases and the assistance in diagnosis of diseases using oral bacterial profiles. Front. Microbiol., 2018, 9: 1136.

[45]

Goel RM, . Streptococcus salivarius: a potential salivary biomarker for orofacial granulomatosis and Crohn’s disease?. Inflamm. Bowel Dis., 2019, 25: 1367-1374.

[46]

Purcell RV, Kaakoush NO, Mitchell HM, Pearson JF, Keenan JI. Gastrointestinal pathobionts in pediatric Crohn’s disease patients. Int. J. Microbiol., 2018, 2018: 9203908.

[47]

Castano-Rodriguez N, Kaakoush NO, Lee WS, Mitchell HM. Dual role of Helicobacter and Campylobacter species in IBD: a systematic review and meta-analysis. Gut, 2017, 66: 235-249.

[48]

Brennan CA, . Aspirin modulation of the colorectal cancer-associated microbe Fusobacterium nucleatum. mBio, 2021, 12: e00547-00521.

[49]

Yamashita T, Tai S, Tsukahara T, Inoue R. Fusobacterium nucleatum impedes remission of colitis in a mouse model. Biosci. Biotechnol. Biochem., 2021, 85: 1235-1242.

[50]

Brennan CA, Garrett WS. Fusobacterium nucleatum—symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol., 2019, 17: 156-166.

[51]

Kitamoto S, . The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell, 2020, 182: 447-462 e414.

[52]

Inohara N. Route connection: mouth to intestine in colitis. Cell Host Microbe, 2017, 22: 730-731.

[53]

Kitamoto S, Nagao-Kitamoto H, Hein R, Schmidt TM, Kamada N. The bacterial connection between the oral cavity and the gut diseases. J. Dent. Res., 2020, 99: 1021-1029.

[54]

Moutsopoulos NM, Konkel JE. Tissue-specific immunity at the oral mucosal barrier. Trends Immunol., 2018, 39: 276-287.

[55]

Lu H, . Deep sequencing reveals microbiota dysbiosis of tongue coat in patients with liver carcinoma. Sci. Rep., 2016, 6

[56]

Lu H, . Deep sequencing reveals microbiota dysbiosis tongue coat. Patients Liver Carcinoma, 2016, 6: 1-11.

[57]

Iwasaki T, . Correlation between ultrasound-diagnosed non-alcoholic fatty liver and periodontal condition in a cross-sectional study in Japan. Sci. Rep., 2018, 8

[58]

Sasaki N, . Endotoxemia by Porphyromonas gingivalis injection aggravates non-alcoholic fatty liver disease, disrupts glucose/lipid metabolism, and alters gut microbiota in mice. Front. Microbiol., 2018, 9: 2470.

[59]

Alakhali MS, Al-Maweri SA, Al-Shamiri HM, Al-Haddad K, Halboub E. The potential association between periodontitis and non-alcoholic fatty liver disease: a systematic review. Clin. Oral Investig., 2018, 22: 2965-2974.

[60]

Qin N, . Alterations of the human gut microbiome in liver cirrhosis. Nature, 2014, 513: 59-64.

[61]

Blasco-Baque V, . Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut, 2017, 66: 872-885.

[62]

Zhong X, . Oral microbiota alteration associated with oral cancer and areca chewing. Oral. Dis., 2021, 27: 226-239.

[63]

Zhang X, Li C, Cao W, Zhang Z. Alterations of gastric microbiota in gastric cancer and precancerous stages. Front. Cell Infect. Microbiol., 2021, 11: 559148.

[64]

Zanetta P, . Oral microbiota and vitamin D impact on oropharyngeal squamous cell carcinogenesis: a narrative literature review. Crit. Rev. Microbiol., 2021, 47: 224-239.

[65]

Sarkar P, . Dysbiosis of oral microbiota during oral squamous cell carcinoma development. Front. Oncol., 2021, 11: 614448.

[66]

Wang J, Jia Z, Zhang B, Peng L, Zhao F. Tracing the accumulation of in vivo human oral microbiota elucidates microbial community dynamics at the gateway to the GI tract. Gut, 2020, 69: 1355-1356.

[67]

Teles FRF, Alawi F, Castilho RM, Wang Y. Association or causation? Exploring the oral microbiome and cancer links. J. Dent. Res., 2020, 99: 1411-1424.

[68]

Kakabadze MZ, Paresishvili T, Karalashvili L, Chakhunashvili D, Kakabadze Z. Oral microbiota and oral cancer: review. Oncol. Rev., 2020, 14: 476.

[69]

Fan X, . Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 2018, 67: 120-127.

[70]

Peters BA, . Oral microbiome composition reflects prospective risk for esophageal cancers. Cancer Res., 2017, 77: 6777-6787.

[71]

Han YW. Commentary: oral bacteria as drivers for colorectal cancer. J. Periodontol., 2014, 85: 1155-1157.

[72]

Gur C, . Fusobacterium nucleatum supresses anti-tumor immunity by activating CEACAM1. Oncoimmunology, 2019, 8: e1581531.

[73]

Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Front. Cell Infect. Microbiol., 2019, 9: 476.

[74]

Zhou X, . The clinical potential of oral microbiota as a screening tool for oral squamous cell carcinomas. Front. Cell Infect. Microbiol., 2021, 11: 728933.

[75]

Lim Y, Totsika M, Morrison M, Punyadeera C. Oral microbiome: a new biomarker reservoir for oral and oropharyngeal cancers. Theranostics, 2017, 7: 4313-4321.

[76]

Hussein AA, . Global incidence of oral and oropharynx cancer in patients younger than 45 years versus older patients: a systematic review. Eur. J. Cancer, 2017, 82: 115-127.

[77]

Islami F, . Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin., 2018, 68: 31-54.

[78]

Irani S. New insights into oral cancer-risk factors and prevention: a review of literature. Int. J. Prev. Med., 2020, 11: 202.

[79]

Wen L, . Porphyromonas gingivalis promotes oral squamous cell carcinoma progression in an immune microenvironment. J. Dent. Res., 2020, 99: 666-675.

[80]

Zhang S, . Analysis of differentially expressed genes in oral epithelial cells infected with Fusobacterium nucleatum for revealing genes associated with oral cancer. J. Cell Mol. Med., 2021, 25: 892-904.

[81]

Kamarajan P, . Periodontal pathogens promote cancer aggressivity via TLR/MyD88 triggered activation of Integrin/FAK signaling that is therapeutically reversible by a probiotic bacteriocin. PLoS Pathog., 2020, 16: e1008881.

[82]

Fitzsimonds ZR, Rodriguez-Hernandez CJ, Bagaitkar J, Lamont RJ. From beyond the pale to the pale riders: the emerging association of bacteria with oral cancer. J. Dent. Res., 2020, 99: 604-612.

[83]

Sankari SL, Mahalakshmi K, Kumar VN. A comparative study of Candida species diversity among patients with oral squamous cell carcinoma and oral potentially malignant disorders. BMC Res. Notes, 2020, 13

[84]

Lafuente Ibanez de Mendoza I, Maritxalar Mendia X, Garcia de la Fuente AM, Quindos Andres G, Aguirre Urizar JM. Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: a systematic review. J. Periodontal Res., 2020, 55: 13-22.

[85]

Liu, S. et al. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack. J. Immunol. 205, 282–289 (2020).

[86]

Chen Q, . Salivary Porphyromonas gingivalis predicts outcome in oral squamous cell carcinomas: a cohort study. BMC Oral Health, 2021, 21

[87]

Torralba MG, . Oral microbial species and virulence factors associated with oral squamous cell carcinoma. Microb. Ecol., 2021, 82: 1030-1046.

[88]

Li Q, . Role of oral bacteria in the development of oral squamous cell carcinoma. Cancers, 2020, 12: 2797.

[89]

Chen MY, . Carcinogenesis of male oral submucous fibrosis alters salivary microbiomes. J. Dent. Res., 2021, 100: 397-405.

[90]

Alizadehgharib S, Ostberg AK, Dahlstrand Rudin A, Dahlgren U, Christenson K. Immunological response of human leucocytes after exposure to lipopolysaccharides from Porphyromonas gingivalis. Clin. Exp. Dent. Res., 2021, 7: 531-538.

[91]

Elsayed R, . Porphyromonas gingivalis provokes exosome secretion and paracrine immune senescence in bystander dendritic cells. Front. Cell Infect. Microbiol., 2021, 11: 669989.

[92]

Ren L, Yang J, Wang J, Zhou X, Liu C. The roles of FOXO1 in periodontal homeostasis and disease. J. Immunol. Res., 2021, 2021: 5557095.

[93]

Aral K, Milward MR, Cooper PR. Gene expression profiles of mitochondria-endoplasmic reticulum tethering in human gingival fibroblasts in response to periodontal pathogens. Arch. Oral Biol., 2021, 128: 105173.

[94]

Vyhnalova T, Danek Z, Gachova D, Linhartova PB. The role of the oral microbiota in the etiopathogenesis of oral squamous cell carcinoma. Microorganisms, 2021, 9: 1549.

[95]

Moura MF, . Nonsurgical periodontal therapy decreases the severity of rheumatoid arthritis and the plasmatic and salivary levels of RANKL and Survivin: a short-term clinical study. Clin. Oral Investig., 2021, 25: 6643-6652.

[96]

Elazazy O, Amr K, Abd El Fattah A, Abouzaid M. Evaluation of serum and gingival crevicular fluid microRNA-223, microRNA-203 and microRNA-200b expression in chronic periodontitis patients with and without diabetes type 2. Arch. Oral Biol., 2021, 121: 104949.

[97]

Chopra A, Bhat SG, Sivaraman K. Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update. J. Oral Microbiol., 2020, 12: 1801090.

[98]

Zheng S, . Porphyromonas gingivalis survival skills: immune evasion. J. Periodontal Res., 2021, 56: 1007-1018.

[99]

Meng F, . Porphyromonas gingivalis promotes the motility of esophageal squamous cell carcinoma by activating NF-kappaB signaling pathway. Microbes Infect., 2019, 21: 296-304.

[100]

Guo W, . Pyruvate kinase M2 promotes prostate cancer metastasis through regulating ERK1/2-COX-2 signaling. Front. Oncol., 2020, 10: 544288.

[101]

de Vicente JC, . PD-L1 expression in tumor cells is an independent unfavorable prognostic factor in oral squamous cell carcinoma. Cancer Epidemiol. Biomark. Prev., 2019, 28: 546-554.

[102]

Groeger S, Denter F, Lochnit G, Schmitz ML, Meyle J. Porphyromonas gingivalis cell wall components induce programmed death ligand 1 (PD-L1) expression on human oral carcinoma cells by a receptor-interacting protein kinase 2 (RIP2)-dependent mechanism. Infect. Immun., 2020, 88: e00051-00020.

[103]

Pontarollo G, . Protease-activated receptor signaling in intestinal permeability regulation. FEBS J., 2020, 287: 645-658.

[104]

Zhang L, . The virulence factor GroEL promotes gelatinase secretion from cells in the osteoblast lineage: Implication for direct crosstalk between bacteria and adult cells. Arch. Oral Biol., 2021, 122: 104991.

[105]

Mu W, . Intracellular Porphyromonas gingivalis promotes the proliferation of colorectal cancer cells via the MAPK/ERK signaling pathway. Front. Cell Infect. Microbiol., 2020, 10: 584798.

[106]

Binder Gallimidi A, . Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget, 2015, 6: 22613-22623.

[107]

Harrandah AM, Chukkapalli SS, Bhattacharyya I, Progulske-Fox A, Chan EKL. Fusobacteria modulate oral carcinogenesis and promote cancer progression. J. Oral. Microbiol., 2020, 13: 1849493.

[108]

Stasiewicz, M. & Karpinski, T. M. The oral microbiota and its role in carcinogenesis. Semin. Cancer Biol. (2021).

[109]

Nieminen MT, . Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. Br. J. Cancer, 2018, 118: 428-434.

[110]

Listyarifah D, . Treponema denticola chymotrypsin-like proteinase is present in early-stage mobile tongue squamous cell carcinoma and related to the clinicopathological features. J. Oral Pathol. Med., 2018, 47: 764-772.

[111]

Asgarian FS, Mahdian M, Amori N. Epidemiology and trends of gastrointestinal cancer in Iran (2004-2008). J. Cancer Res. Ther., 2021, 17: 963-968.

[112]

He F, . Esophageal cancer: trends in incidence and mortality in China from 2005 to 2015. Cancer Med., 2021, 10: 1839-1847.

[113]

Nwizu N, Wactawski-Wende J, Genco RJ. Periodontal disease and cancer: epidemiologic studies and possible mechanisms. Periodontol 2000, 2020, 83: 213-233.

[114]

Narikiyo M, . Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci., 2004, 95: 569-574.

[115]

Chen X, . Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China. PLoS ONE, 2015, 10: e0143603.

[116]

Gao SG, . Preoperative serum immunoglobulin G and A antibodies to Porphyromonas gingivalis are potential serum biomarkers for the diagnosis and prognosis of esophageal squamous cell carcinoma. BMC Cancer, 2018, 18

[117]

Gao S, . Presence of Porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer. Infect. Agent Cancer, 2016, 11

[118]

Chang JS, Tsai CR, Chen LT, Shan YS. Investigating the association between periodontal disease and risk of pancreatic cancer. Pancreas, 2016, 45: 134-141.

[119]

Torres, P. J. et al. Characterization of the salivary microbiome in patients with pancreatic cancer. PeerJ 3, e1373 (2015).

[120]

Wang S, . Fusobacterium nucleatum acts as a pro-carcinogenic bacterium in colorectal cancer: from association to causality. Front Cell Dev. Biol., 2021, 9: 710165.

[121]

Keum N, Giovannucci E. Global burden of colorectal cancer: emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol., 2019, 16: 713-732.

[122]

Pignatelli, P. et al. The potential of colonic tumor tissue Fusobacterium nucleatum to predict staging and its interplay with oral abundance in colon cancer patients. Cancers 13, 1032 (2021).

[123]

Todd, S. M., Settlage, R. E., Lahmers, K. K. & Slade, D. J. Fusobacterium genomics using MinION and illumina sequencing enables genome completion and correction. mSphere 3, e00269–18 (2018).

[124]

Yusuf E, Wybo I, Pierard D. Case series of patients with Fusobacterium nucleatum bacteremia with emphasis on the presence of cancer. Anaerobe, 2016, 39: 1-3.

[125]

Shin J, . Antibody and T cell responses to Fusobacterium nucleatum and Treponema denticola in health and chronic periodontitis. PLoS ONE, 2013, 8: e53703.

[126]

Hashemi Goradel N, . Fusobacterium nucleatum and colorectal cancer: a mechanistic overview. J. Cell. Physiol., 2019, 234: 2337-2344.

[127]

Nabel EG. Cardiovascular disease. N. Engl. J. Med., 2003, 349: 60-72.

[128]

Wolf D, Ley K. Immunity and inflammation in atherosclerosis. Circ. Res., 2019, 124: 315-327.

[129]

Beck JD, Offenbacher S. Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J. Periodontol., 2005, 76: 2089-2100.

[130]

Tonetti MS, Van Dyke TE working group 1 of the joint, E.F.P.A.A.P.w. Periodontitis and atherosclerotic cardiovascular disease: consensus report of the Joint EFP/AAPWorkshop on Periodontitis and Systemic Diseases. J. Periodontol., 2013, 84: S24-S29.

[131]

Persson GR, Persson RE. Cardiovascular disease and periodontitis: an update on the associations and risk. J. Clin. Periodontol., 2008, 35: 362-379.

[132]

Forner L, Nielsen CH, Bendtzen K, Larsen T, Holmstrup P. Increased plasma levels of IL-6 in bacteremic periodontis patients after scaling. J. Clin. Periodontol., 2006, 33: 724-729.

[133]

Zheng XY, . Plumbagin suppresses chronic periodontitis in rats via down-regulation of TNF-alpha, IL-1beta and IL-6 expression. Acta Pharm. Sin., 2017, 38: 1150-1160.

[134]

Marietta E, Horwath I, Balakrishnan B, Taneja V. Role of the intestinal microbiome in autoimmune diseases and its use in treatments. Cell Immunol., 2019, 339: 50-58.

[135]

Zardawi F, Gul S, Abdulkareem A, Sha A, Yates J. Association between periodontal disease and atherosclerotic cardiovascular diseases: revisited. Front. Cardiovasc. Med., 2020, 7: 625579.

[136]

Herrera D, Molina A, Buhlin K, Klinge B. Periodontal diseases and association with atherosclerotic disease. Periodontology, 2020, 83: 66-89.

[137]

Martini AM, . Association of novel Streptococcus sanguinis virulence factors with pathogenesis in a native valve infective endocarditis model. Front. Microbiol., 2020, 11: 10.

[138]

Chamat-Hedemand S, . Prevalence of infective endocarditis in Streptococcal bloodstream infections is dependent on streptococcal species. Circulation, 2020, 142: 720-730.

[139]

Schoffer C, Oliveira LM, Santi SS, Antoniazzi RP, Zanatta FB. C-reactive protein levels are associated with periodontitis and periodontal inflamed surface area in adults with end-stage renal disease. J. Periodontol., 2021, 92: 793-802.

[140]

Liu Y, . The combined use of salivary biomarkers and clinical parameters to predict the outcome of scaling and root planing: a cohort study. J. Clin. Periodontol., 2020, 47: 1379-1390.

[141]

Brun A, . Innovative application of nested PCR for detection of Porphyromonas gingivalis in human highly calcified atherothrombotic plaques. J. Oral. Microbiol., 2020, 12: 1742523.

[142]

Chiu CJ, Chang ML, Kantarci A, Van Dyke TE, Shi W. Exposure to Porphyromonas gingivalis and modifiable risk factors modulate risk for early diabetic retinopathy. Transl. Vis. Sci. Technol., 2021, 10: 23.

[143]

Cairo F, . Periodontal pathogens in atheromatous plaques. A controlled clinical and laboratory trial. J. Periodontal Res., 2004, 39: 442-446.

[144]

Khumaedi AI, Purnamasari D, Wijaya IP, Soeroso Y. The relationship of diabetes, periodontitis and cardiovascular disease. Diabetes Metab. Syndr., 2019, 13: 1675-1678.

[145]

Xuan Y, . Tanshinone IIA attenuates atherosclerosis in apolipoprotein E knockout mice infected with Porphyromonas gingivalis. Inflammation, 2017, 40: 1631-1642.

[146]

Li L, Messas E, Batista EL Jr, Levine RA, Amar S. Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model. Circulation, 2002, 105: 861-867.

[147]

Genco R, Offenbacher S, Beck J. Periodontal disease and cardiovascular disease: epidemiology and possible mechanisms. J. Am. Dent. Assoc., 2002, 133: 14S-22S.

[148]

Bartova J, . Periodontitis as a risk factor of atherosclerosis. J. Immunol. Res., 2014, 2014: 636893.

[149]

Isola G, Polizzi A, Alibrandi A, Williams RC, Lo Giudice A. Analysis of galectin-3 levels as a source of coronary heart disease risk during periodontitis. J. Periodontal Res., 2021, 56: 597-605.

[150]

Isola G, Polizzi A, Alibrandi A, Williams RC, Leonardi R. Independent impact of periodontitis and cardiovascular disease on elevated soluble urokinase-type plasminogen activator receptor (suPAR) levels. J. Periodontol., 2021, 92: 896-906.

[151]

Kamer AR, Craig RG, Niederman R, Fortea J, de Leon MJ. Periodontal disease as a possible cause for Alzheimer’s disease. Periodontology, 2020, 83: 242-271.

[152]

Lin L, . Resilience to Plasma and Cerebrospinal Fluid Amyloid-beta in Cognitively Normal Individuals: Findings From Two Cohort Studies. Front. Aging Neurosci., 2021, 13: 610755.

[153]

Werber T, . The association of periodontitis and Alzheimer’s disease: how to hit two birds with one stone. J. Alzheimers Dis., 2021, 84: 1-21.

[154]

Paganini-Hill A, White SC, Atchison KA. Dentition, dental health habits, and dementia: the Leisure World Cohort Study. J. Am. Geriatr. Soc., 2012, 60: 1556-1563.

[155]

Noble JM, . Periodontitis is associated with cognitive impairment among older adults: analysis of NHANES-III. J. Neurol. Neurosurg. Psychiatry, 2009, 80: 1206-1211.

[156]

Dominy SS, . Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci. Adv., 2019, 5: eaau3333.

[157]

Zeng F, . Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid beta accumulation after Porphyromonas gingivalis infection. J. Neurochem., 2021, 158: 724-736.

[158]

Stephan A, Phillips AG. A case for a non-transgenic animal model of Alzheimer’s disease. Genes Brain Behav., 2005, 4: 157-172.

[159]

Kook SY, . High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis., 2014, 5

[160]

Horowitz M, Horowitz M, Ochs M, Carrau R, Kassam A. Trigeminal neuralgia and glossopharyngeal neuralgia: two orofacial pain syndromes encountered by dentists. J. Am. Dent. Assoc., 2004, 135: 1427-1433. quiz 1468

[161]

Association, A. D., Vol. Suppl 1, 1–2 (American Diabetes Association, Diabetes Care; 2019).

[162]

Genco RJ, Graziani F, Hasturk H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontology, 2020, 83: 59-65.

[163]

Nguyen ATM, . The association of periodontal disease with the complications of diabetes mellitus. A systematic review. Diabetes Res. Clin. Pract., 2020, 165: 108244.

[164]

Matsha, T. et al. Oral microbiome signatures in diabetes mellitus and periodontal disease. J. Dent. Res. 99, 658–665 (2020).

[165]

Ruff WE, Greiling TM, Kriegel MA. Host-microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol., 2020, 18: 521-538.

[166]

Isola G, . Identification of the different salivary Interleukin-6 profiles in patients with periodontitis: a cross-sectional study. Arch. Oral. Biol., 2021, 122: 104997.

[167]

Jia L, . Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll-like receptors. Front. Cell Infect. Microbiol., 2019, 9: 262.

[168]

Mattera M, . Effect of maternal periodontitis on GLUT4 and inflammatory pathway in adult offspring. J. Periodontol., 2019, 90: 884-893.

[169]

Bhat UG, Ilievski V, Unterman TG, Watanabe K. Porphyromonas gingivalis lipopolysaccharide upregulates insulin secretion from pancreatic beta cell line MIN6. J. Periodontol., 2014, 85: 1629-1636.

[170]

Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol., 2003, 17: 24-38.

[171]

Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev., 2020, 2020: 8609213.

[172]

Torrungruang K, Katudat D, Mahanonda R, Sritara P, Udomsak A. Periodontitis is associated with elevated serum levels of cardiac biomarkers-Soluble ST2 and C-reactive protein. J. Clin. Periodontol., 2019, 46: 809-818.

[173]

Wang Y, . A randomized controlled trial of the effects of non-surgical periodontal therapy on cardiac function assessed by echocardiography in type 2 diabetic patients. J. Clin. Periodontol., 2020, 47: 726-736.

[174]

Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. J. Am. Med. Assoc., 2018, 320: 1360-1372.

[175]

Hollenbach JA, . A specific amino acid motif of HLA-DRB1 mediates risk and interacts with smoking history in Parkinson’s disease. Proc. Natl Acad. Sci. USA, 2019, 116: 7419-7424.

[176]

Sakkas LI, Daoussis D, Liossis SN, Bogdanos DP. The infectious basis of ACPA-positive rheumatoid arthritis. Front. Microbiol., 2017, 8: 1853.

[177]

Munoz-Atienza E, . The P. gingivalis autocitrullinome is not a target for ACPA in early rheumatoid arthritis. J. Dent. Res., 2020, 99: 456-462.

[178]

Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of rheumatoid arthritis. Nat. Rev. Rheumatol., 2017, 13: 606-620.

[179]

Gomez-Banuelos E, Mukherjee A, Darrah E, Andrade F. Rheumatoid arthritis-associated mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J. Clin. Med., 2019, 8: 1309.

[180]

Zhang X, . The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med., 2015, 21: 895-905.

[181]

Vogel JP, . The global epidemiology of preterm birth. Best. Pract. Res. Clin. Obstet. Gynaecol., 2018, 52: 3-12.

[182]

Chen C, . Preterm birth in China between 2015 and 2016. Am. J. Public Health, 2019, 109: 1597-1604.

[183]

Walani SR. Global burden of preterm birth. Int. J. Gynaecol. Obstet., 2020, 150: 31-33.

[184]

Fardini Y, Chung P, Dumm R, Joshi N, Han YW. Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection. Infect. Immun., 2010, 78: 1789-1796.

[185]

Chopra A, Radhakrishnan R, Sharma M. Porphyromonas gingivalis and adverse pregnancy outcomes: a review on its intricate pathogenic mechanisms. Crit. Rev. Microbiol., 2020, 46: 213-236.

[186]

Latorre Uriza C, . Periodontal disease, inflammatory cytokines, and PGE2 in pregnant patients at risk of preterm delivery: a pilot study. Infect. Dis. Obstet. Gynecol., 2018, 2018: 7027683.

[187]

Lin D, Moss K, Beck JD, Hefti A, Offenbacher S. Persistently high levels of periodontal pathogens associated with preterm pregnancy outcome. J. Periodontol., 2007, 78: 833-841.

[188]

Barak S, Oettinger-Barak O, Machtei EE, Sprecher H, Ohel G. Evidence of periopathogenic microorganisms in placentas of women with preeclampsia. J. Periodontol., 2007, 78: 670-676.

[189]

Liu H, Redline RW, Han YW. Fusobacterium nucleatum induces fetal death in mice via stimulation of TLR4-mediated placental inflammatory response. J. Immunol., 2007, 179: 2501-2508.

[190]

Fox C, Eichelberger K. Maternal microbiome and pregnancy outcomes. Fertil. Steril., 2015, 104: 1358-1363.

Funding

National Natural Science Foundation of China (National Science Foundation of China)(81870754, 32070120)

AI Summary AI Mindmap
PDF

227

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/