Advances in biomineralization-inspired materials for hard tissue repair

Shuxian Tang , Zhiyun Dong , Xiang Ke , Jun Luo , Jianshu Li

International Journal of Oral Science ›› 2021, Vol. 13 ›› Issue (1) : 42

PDF
International Journal of Oral Science ›› 2021, Vol. 13 ›› Issue (1) : 42 DOI: 10.1038/s41368-021-00147-z
Review Article

Advances in biomineralization-inspired materials for hard tissue repair

Author information +
History +
PDF

Abstract

Biomineralization is the process by which organisms form mineralized tissues with hierarchical structures and excellent properties, including the bones and teeth in vertebrates. The underlying mechanisms and pathways of biomineralization provide inspiration for designing and constructing materials to repair hard tissues. In particular, the formation processes of minerals can be partly replicated by utilizing bioinspired artificial materials to mimic the functions of biomolecules or stabilize intermediate mineral phases involved in biomineralization. Here, we review recent advances in biomineralization-inspired materials developed for hard tissue repair. Biomineralization-inspired materials are categorized into different types based on their specific applications, which include bone repair, dentin remineralization, and enamel remineralization. Finally, the advantages and limitations of these materials are summarized, and several perspectives on future directions are discussed.

Cite this article

Download citation ▾
Shuxian Tang, Zhiyun Dong, Xiang Ke, Jun Luo, Jianshu Li. Advances in biomineralization-inspired materials for hard tissue repair. International Journal of Oral Science, 2021, 13(1): 42 DOI:10.1038/s41368-021-00147-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Omelon SJ, Grynpas MD. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem. Rev., 2008, 108: 4694-4715.

[2]

Kunz W, Kellermeier M. Beyond biomineralization. Science, 2009, 323: 344.

[3]

Ding C, Chen Z, Li J. From molecules to macrostructures: recent development of bioinspired hard tissue repair. Biomater. Sci., 2017, 5: 1435-1449.

[4]

Sommerdijk NAJM, With GD. Biomimetic CaCO3 mineralization using designer molecules and interfaces. Chem. Rev., 2008, 108: 4499-4550.

[5]

Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem. Rev., 2008, 108: 4754-4783.

[6]

Xu X, Chen X, Li J. Natural protein bioinspired materials for regeneration of hard tissues. J. Mater. Chem. B, 2020, 8: 2199-2215.

[7]

Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat. Rev. Mater., 2020, 5: 584-603.

[8]

Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics. J. Mater. Chem. B, 2015, 3: 3112-3129.

[9]

Yao S, . Biomineralization: from material tactics to biological strategy. Adv. Mater., 2017, 29: 1605903.

[10]

de Melo Pereira D, Habibovic P. Biomineralization-inspired material design for bone regeneration. Adv. Healthc. Mater., 2018, 7: 1800700.

[11]

Tertuliano OA, Greer JR. The nanocomposite nature of bone drives its strength and damage resistance. Nat. Mater., 2016, 15: 1195-1202.

[12]

Elsharkawy S, . Protein disorder–order interplay to guide the growth of hierarchical mineralized structures. Nat. Commun., 2018, 9

[13]

Xie J, . Bioprocess-inspired fabrication of materials with new structures and functions. Prog. Mater. Sci., 2019, 105: 100571.

[14]

Mu Z, . Pressure-driven fusion of amorphous particles into integrated monoliths. Science, 2021, 372: 1466.

[15]

Dey A, de With G, Sommerdijk NAJM. In situ techniques in biomimetic mineralization studies of calcium carbonate. Chem. Soc. Rev., 2010, 39: 397-409.

[16]

Crookes-Goodson WJ, Slocik JM, Naik RR. Bio-directed synthesis and assembly of nanomaterials. Chem. Soc. Rev., 2008, 37: 2403-2412.

[17]

Reznikov N, Steele JAM, Fratzl P, Stevens MM. A materials science vision of extracellular matrix mineralization. Nat. Rev. Mater., 2016, 1: 16041.

[18]

Addadi L, Weiner S. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Natl Acad. Sci. USA, 1985, 82: 4110.

[19]

Sharma V, Srinivasan A, Nikolajeff F, Kumar S. Biomineralization process in hard tissues: the interaction complexity within protein and inorganic counterparts. Acta. Biomater., 2021, 120: 20-37.

[20]

Li H, Xin HL, Muller DA, Estroff LA. Visualizing the 3D internal structure of calcite single crystals grown in agarose hydrogels. Science, 2009, 326: 1244.

[21]

Zou Z, . A hydrated crystalline calcium carbonate phase: calcium carbonate hemihydrate. Science, 2019, 363: 396.

[22]

Mann S. Molecular recognition in biomineralization. Nature, 1988, 332: 119-124.

[23]

Bai Y, . Protein nanoribbons template enamel mineralization. Proc. Natl Acad. Sci. USA, 2020, 117: 19201.

[24]

Veis A. A window on biomineralization. Science, 2005, 307: 1419.

[25]

Wald T, . Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif. Proc. Natl Acad. Sci. USA, 2017, 114: E1641.

[26]

Mao L, . Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354: 107.

[27]

Dickerson MB, Sandhage KH, Naik RR. Protein- and peptide-directed syntheses of inorganic materials. Chem. Rev., 2008, 108: 4935-4978.

[28]

Evans JS. “Tuning in” to mollusk shell nacre- and prismatic-associated protein terminal sequences. Implications for biomineralization and the construction of high performance inorganic−organic composites. Chem. Rev., 2008, 108: 4455-4462.

[29]

Krajina BA, Proctor AC, Schoen AP, Spakowitz AJ, Heilshorn SC. Biotemplated synthesis of inorganic materials: an emerging paradigm for nanomaterial synthesis inspired by nature. Prog. Mater. Sci., 2018, 91: 1-23.

[30]

Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials, 2018, 185: 240-275.

[31]

Huang W, . Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater., 2019, 31: 1901561.

[32]

Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat. Mater., 2015, 14: 23-36.

[33]

Bonucci E. Bone mineralization. Front. Biosci. Landmark Ed., 2012, 17: 100-128.

[34]

Murshed M. Mechanism of bone mineralization. Cold Spring Harb. Perspect. Med., 2018, 8: a031229.

[35]

Kim D, Lee B, Thomopoulos S, Jun Y-S. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization. Nat. Commun., 2018, 9

[36]

George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem. Rev., 2008, 108: 4670-4693.

[37]

Yang W, Meyers MA, Ritchie RO. Structural architectures with toughening mechanisms in nature: a review of the materials science of type-I collagenous materials. Prog. Mater. Sci., 2019, 103: 425-483.

[38]

Gupta HS, . Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl Acad. Sci. USA, 2006, 103: 17741.

[39]

Mahamid J, Sharir A, Addadi L, Weiner S. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. Proc. Natl Acad. Sci. USA, 2008, 105: 12748.

[40]

Mahamid J, . Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc. Natl Acad. Sci. USA, 2010, 107: 6316.

[41]

Kerschnitzki M, . Bone mineralization pathways during the rapid growth of embryonic chicken long bones. J. Struct. Biol., 2016, 195: 82-92.

[42]

Olszta MJ, . Bone structure and formation: a new perspective. Mater. Sci. Eng., R., 2007, 58: 77-116.

[43]

Lotsari A, Rajasekharan AK, Halvarsson M, Andersson M. Transformation of amorphous calcium phosphate to bone-like apatite. Nat. Commun., 2018, 9

[44]

Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev., 2008, 108: 4551-4627.

[45]

Jehannin M, Rao A, Cölfen H. New horizons of nonclassical crystallization. J. Am. Chem. Soc., 2019, 141: 10120-10136.

[46]

De Yoreo JJ, . Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349: aaa6760.

[47]

Athanasiadou D, Carneiro KMM. DNA nanostructures as templates for biomineralization. Nat. Rev. Chem., 2021, 5: 93-108.

[48]

Meldrum FC, Cölfen H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev., 2008, 108: 4332-4432.

[49]

Jiao K, . Complementarity and uncertainty in intrafibrillar mineralization of collagen. Adv. Funct. Mater., 2016, 26: 6858-6875.

[50]

Niu L, . Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat. Mater., 2017, 16: 370-378.

[51]

Oosterlaken BM, Vena MP, de With G. In vitro mineralization of collagen. Adv. Mater., 2021, 33: 2004418.

[52]

Yu L, Wei M. Biomineralization of collagen-based materials for hard tissue repair. Int. J. Mol. Sci., 2021, 22: 944.

[53]

Lenton S, Wang Q, Nylander T, Teixeira S, Holt C. Structural biology of calcium phosphate nanoclusters sequestered by phosphoproteins. Crystals, 2020, 10: 755.

[54]

Olszta MJ, . Bone structure and formation: a new perspective. Mater. Sci. Eng., R., 2007, 58: 77-116.

[55]

Deshpande AS, Beniash E. Bioinspired synthesis of mineralized collagen fibrils. Cryst. Growth Des., 2008, 8: 3084-3090.

[56]

Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials, 2008, 29: 1127-1137.

[57]

Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small, 2016, 12: 4611-4632.

[58]

Huang X, . Hollow mesoporous zirconia delivery system for biomineralization precursors. Acta Biomater., 2018, 67: 366-377.

[59]

Du T, . Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress. J. Mater. Chem. B, 2020, 8: 2562-2572.

[60]

Niu X, . Shear-mediated orientational mineralization of bone apatite on collagen fibrils. J. Mater. Chem. B, 2017, 5: 9141-9147.

[61]

Wang Y, . The predominant role of collagen in the nucleation, growth, structure and orientation of bone apatite. Nat. Mater., 2012, 11: 724-733.

[62]

Cui F, Li Y, Ge J. Self-assembly of mineralized collagen composites. Mater. Sci. Eng., R., 2007, 57: 1-27.

[63]

Zhang W, Liao S, Cui F. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem. Mater., 2003, 15: 3221-3226.

[64]

Ma Y, . Involvement of prenucleation clusters in calcium phosphate mineralization of collagen. Acta Biomater., 2021, 120: 213-223.

[65]

Song, Q. et al. Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization. Sci. Adv. 5, eaav9075 (2019).

[66]

Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater. Sci. Eng., R., 2014, 80: 1-36.

[67]

Zhang Y, . Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv. Funct. Mater., 2019, 29: 1903279.

[68]

Yi H, Ur Rehman F, Zhao C, Liu B, He N. Recent advances in nano scaffolds for bone repair. Bone Res, 2016, 4: 16050.

[69]

Griffanti G, Nazhat SN. Dense fibrillar collagen-based hydrogels as functional osteoid-mimicking scaffolds. Int. Mater. Rev., 2020, 65: 502-521.

[70]

Ho-Shui-Ling A, . Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 2018, 180: 143-162.

[71]

Garot C, Bettega G, Picart C. Additive manufacturing of material scaffolds for bone regeneration: toward application in the clinics. Adv. Funct. Mater., 2021, 31: 2006967.

[72]

Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv. Mater., 2015, 27: 1143-1169.

[73]

Zhang D, Wu X, Chen J, Lin K. The development of collagen based composite scaffolds for bone regeneration. Bioact. Mater., 2018, 3: 129-138.

[74]

Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact. Mater., 2021, 6: 1491-1511.

[75]

Du M, Chen J, Liu K, Xing H, Song C. Recent advances in biomedical engineering of nano-hydroxyapatite including dentistry, cancer treatment and bone repair. Compos. B Eng., 2021, 215: 108790.

[76]

Du Y, Guo JL, Wang J, Mikos AG, Zhang S. Hierarchically designed bone scaffolds: from internal cues to external stimuli. Biomaterials, 2019, 218: 119334.

[77]

He W, Rajasekharan AK, Tehrani-Bagha AR, Andersson M. Mesoscopically ordered bone-mimetic nanocomposites. Adv. Mater., 2015, 27: 2260-2264.

[78]

Liu Y, . Thermodynamically controlled self-assembly of hierarchically staggered architecture as an osteoinductive alternative to bone autografts. Adv. Funct. Mater., 2019, 29: 1806445.

[79]

Liu Y, . Hierarchically Staggered Nanostructure of Mineralized Collagen as a Bone-Grafting Scaffold. Adv. Mater., 2016, 28: 8740-8748.

[80]

Yu L, . Intrafibrillar mineralized collagen–hydroxyapatite-based scaffolds for bone regeneration. ACS Appl. Mater. Interfaces, 2020, 12: 18235-18249.

[81]

Thula TT, . In vitro mineralization of dense collagen substrates: a biomimetic approach toward the development of bone-graft materials. Acta Biomater., 2011, 7: 3158-3169.

[82]

Thrivikraman G, . Rapid fabrication of vascularized and innervated cell-laden bone models with biomimetic intrafibrillar collagen mineralization. Nat. Commun., 2019, 10

[83]

Milazzo M, Jung GS, Danti S, Buehler MJ. Mechanics of mineralized collagen fibrils upon transient loads. ACS Nano, 2020, 14: 8307-8316.

[84]

Liu Y, . Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly. Adv. Mater., 2011, 23: 975-980.

[85]

Jee SS, Thula TT, Gower LB. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: Influence of polymer molecular weight. Acta Biomater., 2010, 6: 3676-3686.

[86]

Zhang J, . Ionic colloidal molding as a biomimetic scaffolding strategy for uniform bone tissue regeneration. Adv. Mater., 2017, 29: 1605546.

[87]

Olszta MJ, Douglas EP, Gower LB. Intrafibrillar mineralization of collagen using a liquid-phase mineral precursor. Mater. Res. Soc. Symp. Proc., 2003, 774: 127.

[88]

Olszta MJ, Douglas EP, Gower LB. Scanning electron microscopic analysis of the mineralization of type I collagen via a polymer-induced liquid-precursor (PILP) process. Calcif. Tissue Int., 2003, 72: 583-591.

[89]

Liu Y, . Hierarchical and non-hierarchical mineralisation of collagen. Biomaterials, 2011, 32: 1291-1300.

[90]

Lausch AJ, Chong LC, Uludag H, Sone ED. Multiphasic collagen scaffolds for engineered tissue interfaces. Adv. Funct. Mater., 2018, 28: 1804730.

[91]

Niu L, . Infiltration of silica inside fibrillar collagen. Angew. Chem. Int. Ed., 2011, 50: 11688-11691.

[92]

Niu L, . Multiphase intrafibrillar mineralization of collagen. Angew. Chem. Int. Ed., 2013, 52: 5762-5766.

[93]

Niu L, . Biomimetic silicification of demineralized hierarchical collagenous tissues. Biomacromolecules, 2013, 14: 1661-1668.

[94]

Sun J, . Intrafibrillar silicified collagen scaffold promotes in situ bone regeneration by activating the monocyte p38 signaling pathway. Acta. Biomater., 2018, 67: 354-365.

[95]

Sun J, . Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials, 2017, 113: 203-216.

[96]

Jiao K, . Biphasic silica/apatite co-mineralized collagen scaffolds stimulate osteogenesis and inhibit RANKL-mediated osteoclastogenesis. Acta. Biomater., 2015, 19: 23-32.

[97]

Niu L, . Intrafibrillar silicification of collagen scaffolds for sustained release of stem cell homing chemokine in hard tissue regeneration. FASEB J., 2012, 26: 4517-4529.

[98]

Zhou B, . Adopting the principles of collagen biomineralization for intrafibrillar infiltration of yttria-stabilized zirconia into three-dimensional collagen scaffolds. Adv. Funct. Mater., 2014, 24: 1895-1903.

[99]

Wang R, . Synthesis of nanophase hydroxyapatite/collagen composite. J. Mater. Sci. Lett., 1995, 14: 490-492.

[100]

Bradt J, Mertig M, Teresiak A, Pompe W. Biomimetic mineralization of collagen by combined fibril assembly and calcium phosphate formation. Chem. Mater., 1999, 11: 2694-2701.

[101]

Cui, Y., Cui, H. & Wang, X. In Mineralized Collagen Bone Graft Substitutes (eds Wang, X., Qiu, Z., & Cui, H.) Ch. 2 (Elsevier Ltd., 2019).

[102]

Wang Y, . Investigations of the initial stage of recombinant human-like collagen mineralization. Mater. Sci. Eng., C., 2006, 26: 635-638.

[103]

Shi X, . The observed difference of RAW264.7 macrophage phenotype on mineralized collagen and hydroxyapatite. Biomed. Mater., 2018, 13: 041001.

[104]

Liu F, . Comparison of rabbit rib defect regeneration with and without graft. J. Mater. Sci.: Mater. Med., 2016, 28: 2.

[105]

Wang S, . A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep. Regen. Biomater., 2018, 5: 283-292.

[106]

Pan Y, Yang G, Li Z, Shi Z, Sun Z. Clinical observation of biomimetic mineralized collagen artificial bone putty for bone reconstruction of calcaneus fracture. Regen. Biomater., 2018, 5: 61-67.

[107]

Gao C, . Clinical observation of mineralized collagen bone grafting after curettage of benign bone tumors. Regen. Biomater., 2020, 7: 567-575.

[108]

Luo K, . Poly(methyl methacrylate) bone cement composited with mineralized collagen for osteoporotic vertebral compression fractures in extremely old patients. Regen. Biomater., 2020, 7: 29-34.

[109]

Liao S, Cui F, Zhang W, Feng Q. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J. Biomed. Mater. Res. B, 2004, 69B: 158-165.

[110]

Wang S, . Tuning pore features of mineralized collagen/PCL scaffolds for cranial bone regeneration in a rat model. Mater. Sci. Eng., C., 2020, 106: 110186.

[111]

Zhang S, Cui F, Liao S, Zhu Y, Han L. Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite. J. Mater. Sci.: Mater. Med., 2003, 14: 641-645.

[112]

Zhu J, . Mineralized collagen modified polymethyl methacrylate bone cement for osteoporotic compression vertebral fracture at 1-year follow-up. Spine, 2019, 44: 827-838.

[113]

Chen Z, . Degradability of injectable calcium sulfate/mineralized collagen-based bone repair material and its effect on bone tissue regeneration. Mater. Sci. Eng., C., 2014, 45: 94-102.

[114]

Zhang X, . In vitro and in vivo enhancement of osteogenic capacity in a synthetic BMP-2 derived peptide-coated mineralized collagen composite. J. Tissue Eng. Regen. Med., 2016, 10: 99-107.

[115]

Liu X, . Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. J. Biomed. Mater. Res. B, 2010, 94B: 44-52.

[116]

Song, T. et al. In Mineralized Collagen Bone Graft Substitutes (eds Wang, X., Qiu, Z., & Cui, H.) Ch. 5 (Elsevier Ltd., 2019).

[117]

Ai, W., Hu, Y., He, Z., Song, T. & Wang, Z. In Mineralized Collagen Bone Graft Substitutes (eds Wang, X., Qiu, Z., & Cui, H.) Ch. 4 (Elsevier Ltd., 2019).

[118]

Wang, Z., Cui, Y. & Qiu, Z. In Mineralized Collagen Bone Graft Substitutes (eds Wang, X., Qiu, Z., & Cui, H.) Ch. 3 (Elsevier Ltd., 2019).

[119]

Li Y, Chen X, Fok A, Rodriguez-Cabello JC, Aparicio C. Biomimetic mineralization of recombinamer-based hydrogels toward controlled morphologies and high mineral density. ACS Appl. Mater. Interfaces, 2015, 7: 25784-25792.

[120]

Li Y, Rodriguez-Cabello JC, Aparicio C. Intrafibrillar mineralization of self-assembled elastin-like recombinamer fibrils. ACS Appl. Mater. Interfaces, 2017, 9: 5838-5846.

[121]

Qi Y, Cheng Z, Ye Z, Zhu H, Aparicio C. Bioinspired mineralization with hydroxyapatite and hierarchical naturally aligned nanofibrillar cellulose. ACS Appl. Mater. Interfaces, 2019, 11: 27598-27604.

[122]

Yu Y, . Biomimetic mineralized organic–inorganic hybrid macrofiber with spider silk-like supertoughness. Adv. Funct. Mater., 2020, 30: 1908556.

[123]

Yao S, . Osteoporotic bone recovery by a highly bone-inductive calcium phosphate polymer-induced liquid-precursor. Adv. Sci., 2019, 6: 1900683.

[124]

Cao CY, Mei ML, Li Q, Lo ECM, Chu CH. Methods for biomimetic remineralization of human dentine: a systematic review. Int. J. Mol. Sci., 2015, 16: 4615-4627.

[125]

Niu L, . Biomimetic remineralization of dentin. Dent. Mater., 2014, 30: 77-96.

[126]

Zhong B, . Contemporary research findings on dentine remineralization. J. Tissue Eng. Regen. Med., 2015, 9: 1004-1016.

[127]

Shahmoradi, M., Bertassoni, L. E., Elfallah, H. M. & Swain, M. In Advances in Calcium Phosphate Biomaterials (ed Ben-Nissan, B.) Ch. 17 (Springer, 2014).

[128]

Bleicher, F., Richard, B., Thivichon-Prince, B., Farges, J. C. & Carrouel, F. In Stem Cell Biology and Tissue Engineering in Dental Sciences (eds Vishwakarma, A., Sharpe, P., Shi, S., & Ramalingam, M.) Ch. 30 (Elsevier Inc., 2015).

[129]

El Gezawi M, Wölfle UC, Haridy R, Fliefel R, Kaisarly D. Remineralization, regeneration, and repair of natural tooth structure: Influences on the future of restorative dentistry practice. ACS Biomater. Sci. Eng., 2019, 5: 4899-4919.

[130]

Prasad M, Butler WT, Qin C. Dentin sialophosphoprotein in biomineralization. Connect. Tissue Res., 2010, 51: 404-417.

[131]

Liang K, . 8DSS-promoted remineralization of demineralized dentin in vitro. J. Mater. Chem. B, 2015, 3: 6763-6772.

[132]

Li J, . Bioinspired intrafibrillar mineralization of human dentine by PAMAM dendrimer. Biomaterials, 2013, 34: 6738-6747.

[133]

Shao C, . Citrate improves collagen mineralization via interface wetting: A physicochemical understanding of biomineralization control. Adv. Mater., 2018, 30: 1704876.

[134]

Li C, Lu D, Deng J, Zhang X, Yang P. Amyloid-Like rapid surface modification for antifouling and in-depth remineralization of dentine tubules to treat dental hypersensitivity. Adv. Mater., 2019, 31: 1903973.

[135]

Milan AM, Sugars RV, Embery G, Waddington RJ. Adsorption and interactions of dentine phosphoprotein with hydroxyapatite and collagen. Eur. J. Oral. Sci., 2006, 114: 223-231.

[136]

Yarbrough DK, . Specific binding and mineralization of calcified surfaces by small peptides. Calcif. Tissue Int., 2010, 86: 58-66.

[137]

Liang K, . 8DSS peptide induced effective dentinal tubule occlusion in vitro. Dent. Mater., 2018, 34: 629-640.

[138]

Cao Y, . A novel oligopeptide simulating dentine matrix protein 1 for biomimetic mineralization of dentine. Clin. Oral. Investig., 2014, 18: 873-881.

[139]

He G, Dahl T, Veis A, George A. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat. Mater., 2003, 2: 552-558.

[140]

Padovano JD, . DMP1-derived peptides promote remineralization of human dentin. J. Dent. Res., 2015, 94: 608-614.

[141]

Ling Z, . Effects of oligopeptide simulating DMP-1/mineral trioxide aggregate/agarose hydrogel biomimetic mineralisation model for the treatment of dentine hypersensitivity. J. Mater. Chem. B, 2019, 7: 5825-5833.

[142]

Wang Q, Wang X, Tian L, Cheng Z, Cui F. In situ remineralizaiton of partially demineralized human dentine mediated by a biomimetic non-collagen peptide. Soft Matter, 2011, 7: 9673-9680.

[143]

Deshpande AS, Fang P, Simmer JP, Margolis HC, Beniash E. Amelogenin-collagen interactions regulate calcium phosphate mineralization in vitro. J. Biol. Chem., 2010, 285: 19277-19287.

[144]

Mukherjee K, Visakan G, Phark JH, Moradian-Oldak J. Enhancing collagen mineralization with amelogenin peptide: toward the restoration of dentin. ACS Biomater. Sci. Eng., 2020, 6: 2251-2262.

[145]

Wang Q, . A novel amphiphilic oligopeptide induced the intrafibrillar mineralisation via interacting with collagen and minerals. J. Mater. Chem. B, 2020, 8: 2350-2362.

[146]

Duncan R, Izzo L. Dendrimer biocompatibility and toxicity. Adv. Drug Deliv. Rev., 2005, 57: 2215-2237.

[147]

Nimesh, S. in Gene Therapy (ed Nimesh, S.) Ch. 13 (Woodhead Publishing Ltd., 2013).

[148]

Yang S, He H, Wang L, Jia X, Feng H. Oriented crystallization of hydroxyapatite by the biomimetic amelogenin nanospheres from self-assemblies of amphiphilic dendrons. Chem. Commun., 2011, 47: 10100-10102.

[149]

Yang J, . Staged self-assembly of PAMAM dendrimers into macroscopic aggregates with a microribbon structure similar to that of amelogenin. Soft Matter, 2013, 9: 7553-7559.

[150]

Esfand R, Tomalia DA. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today, 2001, 6: 427-436.

[151]

Naka K, Kobayashi A, Chujo Y. Effect of anionic 4.5-generation polyamidoamine dendrimer on the formation of calcium carbonate polymorphs. Bull. Chem. Soc. Jpn., 2002, 75: 2541-2546.

[152]

Khopade AJ, Khopade S, Jain NK. Development of hemoglobin aquasomes from spherical hydroxyapatite cores precipitated in the presence of half-generation poly(amidoamine) dendrimer. Int. J. Pharm., 2002, 241: 145-154.

[153]

Yang X, Shang H, Ding C, Li J. Recent developments and applications of bioinspired dendritic polymers. Polym. Chem., 2015, 6: 668-680.

[154]

Tao S, . The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Adv., 2017, 7: 54947-54955.

[155]

Zhou Y, . Triclosan-loaded poly(amido amine) dendrimer for simultaneous treatment and remineralization of human dentine. Colloids Surf., B, 2014, 115: 237-243.

[156]

Xie F, Wei X, Li Q, Zhou T. In vivo analyses of the effects of polyamidoamine dendrimer on dentin biomineralization and dentinal tubules occlusion. Dent. Mater. J., 2016, 35: 104-111.

[157]

Zhang H, . Effective dentin restorative material based on phosphate-terminated dendrimer as artificial protein. Colloids Surf., B, 2015, 128: 304-314.

[158]

Zhu B, . One-step phosphorylated poly(amide-amine) dendrimer loaded with apigenin for simultaneous remineralization and antibacterial of dentine. Colloids Surf., B, 2018, 172: 760-768.

[159]

Wang T, Yang S, Wang L, Feng H. Use of multifunctional phosphorylated PAMAM dendrimers for dentin biomimetic remineralization and dentinal tubule occlusion. RSC Adv., 2015, 5: 11136-11144.

[160]

Jia R, Lu Y, Yang C, Luo X, Han Y. Effect of generation 4.0 polyamidoamine dendrimer on the mineralization of demineralized dentinal tubules in vitro. Arch. Oral. Biol., 2014, 59: 1085-1093.

[161]

Liang K, . Biomimetic mineralization of collagen fibrils induced by amine-terminated PAMAM dendrimers—PAMAM dendrimers for remineralization. J. Biomater. Sci., Polym. Ed., 2015, 26: 963-974.

[162]

Liang K, . Remineralization of demineralized dentin induced by amine-terminated PAMAM dendrimer. Macromol. Mater. Eng., 2015, 300: 107-117.

[163]

Gao Y, . Effect and stability of poly(amido amine)-induced biomineralization on dentinal tubule occlusion. Materials, 2017, 10: 384.

[164]

Wang T, Yang S, Wang L, Feng H. Use of poly (amidoamine) dendrimer for dentinal tubule occlusion: a preliminary study. PLoS One, 2015, 10

[165]

Liang K, . Effective dentinal tubule occlusion induced by polyhydroxy-terminated PAMAM dendrimer in vitro. RSC Adv., 2014, 4: 43496-43503.

[166]

Liang K, . Poly (amido amine) and nano-calcium phosphate bonding agent to remineralize tooth dentin in cyclic artificial saliva/lactic acid. Mater. Sci. Eng., C., 2017, 72: 7-17.

[167]

Xiao S, . Combining bioactive multifunctional dental composite with PAMAM for root dentin remineralization. Materials, 2017, 10: 89.

[168]

Liang K, . Poly(amido amine) and rechargeable adhesive containing calcium phosphate nanoparticles for long-term dentin remineralization. J. Dent., 2019, 85: 47-56.

[169]

Liang K, . Poly (amido amine) dendrimer and dental adhesive with calcium phosphate nanoparticles remineralized dentin in lactic acid. J. Biomed. Mater. Res. B, 2018, 106: 2414-2424.

[170]

Liang K, . Long-term dentin remineralization by poly(amido amine) and rechargeable calcium phosphate nanocomposite after fluid challenges. Dent. Mater., 2018, 34: 607-618.

[171]

Liang K, . Poly(amido amine) and calcium phosphate nanocomposite remineralization of dentin in acidic solution without calcium phosphate ions. Dent. Mater., 2017, 33: 818-829.

[172]

Liang K, . Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite. Dent. Mater., 2016, 32: 1429-1440.

[173]

Lin X, . Fabrication and characterization of dendrimer-functionalized nano-hydroxyapatite and its application in dentin tubule occlusion. J. Biomater. Sci. Polym. Ed., 2017, 28: 846-863.

[174]

Bae J, . Effects of poly(amidoamine) dendrimer-coated mesoporous bioactive glass nanoparticles on dentin remineralization. Nanomaterials, 2019, 9: 591.

[175]

Liang K, . Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int. J. Oral. Sci., 2019, 11: 15.

[176]

Nudelman F, . The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat. Mater., 2010, 9: 1004-1009.

[177]

Burwell AK, . Functional remineralization of dentin lesions using polymer-induced liquid-precursor process. PLoS One, 2012, 7

[178]

Chen Y, . Hierarchical structure and mechanical properties of remineralized dentin. J. Mech. Behav. Biomed. Mater., 2014, 40: 297-306.

[179]

Wang J, . Remineralization of dentin collagen by meta-stabilized amorphous calcium phosphate. Cryst. Eng. Comm., 2013, 15: 6151-6158.

[180]

Chen R, . Biomimetic remineralization of artificial caries dentin lesion using Ca/P-PILP. Dent. Mater., 2020, 36: 1397-1406.

[181]

Sun J, . Biomimetic promotion of dentin remineralization using L-glutamic acid: Inspiration from biomineralization proteins. J. Mater. Chem. B, 2014, 2: 4544-4553.

[182]

Zhao L, . Effect of aspartic acid on the crystallization kinetics of ACP and dentin remineralization. J. Mech. Behav. Biomed. Mater., 2021, 115: 104226.

[183]

Chen C, . Glutaraldehyde-induced remineralization improves the mechanical properties and biostability of dentin collagen. Mater. Sci. Eng., C., 2016, 67: 657-665.

[184]

He H, . Promotion effect of immobilized chondroitin sulfate on intrafibrillar mineralization of collagen. Carbohydr. Polym., 2020, 229: 115547.

[185]

Qu Y, . Polydopamine promotes dentin remineralization via interfacial control. ACS Biomater. Sci. Eng., 2020, 6: 3327-3334.

[186]

Luo X, . Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica. Acta Biomater., 2016, 31: 378-387.

[187]

Zhang W, . Biomimetic intrafibrillar mineralization of type I collagen with intermediate precursors-loaded mesoporous carriers. Sci. Rep., 2015, 5

[188]

Wang Z, . A novel fluorescent adhesive-assisted biomimetic mineralization. Nanoscale, 2018, 10: 18980-18987.

[189]

Wu Z, . Self-etch adhesive as a carrier for ACP nanoprecursors to deliver biomimetic remineralization. ACS Appl. Mater. Interfaces, 2017, 9: 17710-17717.

[190]

Mai S, . Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin. Dent. Mater., 2009, 25: 1230-1239.

[191]

Gu L, . Changes in stiffness of resin-infiltrated demineralized dentin after remineralization by a bottom-up biomimetic approach. Acta Biomater., 2010, 6: 1453-1461.

[192]

Kim YK, . Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices—Implications in the aging of resin–dentin bonds. Acta Biomater., 2010, 6: 3729-3739.

[193]

Kim J, . Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom–up approach. Acta Biomater., 2010, 6: 2740-2750.

[194]

Ryou H, . Effect of biomimetic remineralization on the dynamic nanomechanical properties of dentin hybrid layers. J. Dent. Res., 2011, 90: 1122-1128.

[195]

Gu L, . A chemical phosphorylation-inspired design for type I collagen biomimetic remineralization. Dent. Mater., 2010, 26: 1077-1089.

[196]

Liu Y, . The use of sodium trimetaphosphate as a biomimetic analog of matrix phosphoproteins for remineralization of artificial caries-like dentin. Dent. Mater., 2011, 27: 465-477.

[197]

Gu L, . Biomimetic analogs for collagen biomineralization. J. Dent. Res., 2010, 90: 82-87.

[198]

Qi Y, . Remineralization of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate. Acta Biomater., 2012, 8: 836-842.

[199]

Zheng B, . Phosphorylated chitosan to promote biomimetic mineralization of type I collagen as a strategy for dentin repair and bone tissue engineering. N. J. Chem., 2019, 43: 2002-2010.

[200]

Cantaert B, . Think positive: phase separation enables a positively charged additive to induce dramatic changes in calcium carbonate morphology. Adv. Funct. Mater., 2012, 22: 907-915.

[201]

Yang H, . Biodegradable mesoporous delivery system for biomineralization precursors. Int J. Nanomed., 2017, 12: 839-854.

[202]

Gil de Bona A, Bidlack F. Tooth enamel and its dynamic protein matrix. Int. J. Mol. Sci., 2020, 21: 4458.

[203]

Pandya M, . Posttranslational amelogenin processing and changes in matrix assembly during enamel development. Front. Physiol., 2017, 8: 790-790.

[204]

Gopinathan G, . The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation. Front. Physiol., 2014, 5: 430.

[205]

Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental enamel formation and implications for oral health and disease. Physiol. Rev., 2017, 97: 939-993.

[206]

La Fontaine A, . Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel. Sci. Adv., 2016, 2

[207]

Gordon LM, . Amorphous intergranular phases control the properties of rodent tooth enamel. Science, 2015, 347: 746.

[208]

Beniash E, . The hidden structure of human enamel. Nat. Commun., 2019, 10

[209]

Yamakoshi Y. Porcine amelogenin: Alternative splicing, proteolytic processing, protein-protein interactions, and possible functions. J. Oral. Biosci., 2011, 53: 275-283.

[210]

Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J. Struct. Biol., 1999, 126: 270-299.

[211]

Beniash E, Metzler RA, Lam RSK, Gilbert PUPA. Transient amorphous calcium phosphate in forming enamel. J. Struct. Biol., 2009, 166: 133-143.

[212]

Yang X, . How amelogenin orchestrates the organization of hierarchical elongated microstructures of apatite. J. Phys. Chem. B, 2010, 114: 2293-2300.

[213]

Du C, Falini G, Fermani S, Abbott C, Moradian-Oldak J. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science, 2005, 307: 1450.

[214]

Fang P, Conway JF, Margolis HC, Simmer JP, Beniash E. Hierarchical self-assembly of amelogenin and the regulation of biomineralization at the nanoscale. Proc. Natl Acad. Sci. USA, 2011, 108: 14097.

[215]

Moradian-Oldak J. Protein-mediated enamel mineralization. Front. Biosci., 2012, 17: 1996-2023.

[216]

Prajapati S, Tao J, Ruan Q, De Yoreo JJ, Moradian-Oldak J. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals. Biomaterials, 2016, 75: 260-270.

[217]

Cao CY, Mei ML, Li Q, Lo ECM, Chu CH. Methods for biomimetic mineralisation of human enamel: a systematic review. Materials, 2015, 8: 2873-2886.

[218]

Wu D, . Hydroxyapatite-anchored dendrimer for in situ remineralization of human tooth enamel. Biomaterials, 2013, 34: 5036-5047.

[219]

Zhou Y, Zhou Y, Gao L, Wu C, Chang J. Synthesis of artificial dental enamel by an elastin-like polypeptide assisted biomimetic approach. J. Mater. Chem. B, 2018, 6: 844-853.

[220]

Totiam P, González-Cabezas C, Fontana MR, Zero DT. A new in vitro model to study the relationship of gap size and secondary caries. Caries Res, 2007, 41: 467-473.

[221]

Pandya M, Diekwisch TGH. Enamel biomimetics—fiction or future of dentistry. Int. J. Oral. Sci., 2019, 11: 8.

[222]

Chen H, . Acellular synthesis of a human enamel-like microstructure. Adv. Mater., 2006, 18: 1846-1851.

[223]

Yin, Y., Yun, S., Fang, J. & Chen, H. Chemical regeneration of human tooth enamel under near-physiological conditions. Chem. Commun. 5892–5894 (2009).

[224]

Fowler CE, Li M, Mann S, Margolis HC. Influence of surfactant assembly on the formation of calcium phosphate materials—a model for dental enamel formation. J. Mater. Chem., 2005, 15: 3317-3325.

[225]

Xie R, Feng Z, Li S, Xu B. EDTA-assisted self-assembly of fluoride-substituted hydroxyapatite coating on enamel substrate. Cryst. Growth Des., 2011, 11: 5206-5214.

[226]

Ye W, Wang X. Ribbon-like and rod-like hydroxyapatite crystals deposited on titanium surface with electrochemical method. Mater. Lett., 2007, 61: 4062-4065.

[227]

Wei Y, . Enamel repair with amorphous ceramics. Adv. Mater., 2020, 32: 1907067.

[228]

Yamagishi K, . A synthetic enamel for rapid tooth repair. Nature, 2005, 433: 819-819.

[229]

Aulestia, F. J. et al. Fluoride exposure alters Ca2+ signaling and mitochondrial function in enamel cells. Sci. Signal. 13, eaay0086 (2020).

[230]

Liao Y, . Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLoS One, 2015, 10

[231]

Chen M, . Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomater., 2014, 10: 4437-4446.

[232]

Besinis A, De Peralta T, Tredwin CJ, Handy RD. Review of nanomaterials in dentistry: Interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano, 2015, 9: 2255-2289.

[233]

Mukherjee K, . Peptide-based bioinspired approach to regrowing multilayered aprismatic enamel. ACS Omega, 2018, 3: 2546-2557.

[234]

Shao, C. et al. Repair of tooth enamel by a biomimetic mineralization frontier ensuring epitaxial growth. Sci. Adv. 5, eaaw9569 (2019).

[235]

Sowmya S, Bumgardener JD, Chennazhi KP, Nair SV, Jayakumar R. Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Prog. Polym. Sci., 2013, 38: 1748-1772.

[236]

Wang D, . Controlling enamel remineralization by amyloid-like amelogenin mimics. Adv. Mater., 2020, 32: 2002080.

[237]

Margolis HC, Beniash E, Fowler CE. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J. Dent. Res., 2006, 85: 775-793.

[238]

Bekshe Lokappa S, . Interactions of amelogenin with phospholipids. Biopolymers, 2015, 103: 96-108.

[239]

Wang, Y. et al. In Bioinspired Materials Science and Engineering (eds Yang, G., Xiao, L., & Lamboni, L.) Ch. 18 (John Wiley & Sons, Inc., 2018).

[240]

Dunker AK, Silman I, Uversky VN, Sussman JL. Function and structure of inherently disordered proteins. Curr. Opin. Struct. Biol., 2008, 18: 756-764.

[241]

Delak K, . The tooth enamel protein, porcine amelogenin, is an intrinsically disordered protein with an extended molecular configuration in the monomeric form. Biochemistry, 2009, 48: 2272-2281.

[242]

Simmer JP, . Isolation and characterization of a mouse amelogenin expressed in Escherichia coli. Calcif. Tissue Int., 1994, 54: 312-319.

[243]

Bromley KM, . Dissecting amelogenin protein nanospheres: characterization of metastable oligomers. J. Biol. Chem., 2011, 286: 34643-34653.

[244]

Wen H, Fincham AG, Moradian-Oldak J. Progressive accretion of amelogenin molecules during nanospheres assembly revealed by atomic force microscopy. Matrix Biol., 2001, 20: 387-395.

[245]

Martinez-Avila O, . Self-assembly of filamentous amelogenin requires calcium and phosphate: from dimers via nanoribbons to fibrils. Biomacromolecules, 2012, 13: 3494-3502.

[246]

Moradian-Oldak J. The emergence of "nanospheres" as basic structural components adopted by amelogenin. J. Dent. Res., 2007, 86: 487-490.

[247]

Moradian-Oldak J, Goldberg M. Amelogenin supra-molecular assembly in vitro compared with the architecture of the forming enamel matrix. Cells Tissues Organs, 2005, 181: 202-218.

[248]

Fincham AG, . Evidence for amelogenin "nanospheres" as functional components of secretory-stage enamel matrix. J. Struct. Biol., 1995, 115: 50-59.

[249]

Moradian-Oldak J, Tan J, Fincham AG. Interaction of amelogenin with hydroxyapatite crystals: an adherence effect through amelogenin molecular self-association. Biopolymers, 1998, 46: 225-238.

[250]

Kwak S, . Regulation of calcium phosphate formation by amelogenins under physiological conditions. Eur. J. Oral. Sci., 2011, 119: 103-111.

[251]

Wang L, Guan X, Du C, Moradian-Oldak J, Nancollas GH. Amelogenin promotes the formation of elongated apatite microstructures in a controlled crystallization system. J. Phys. Chem. C., 2007, 111: 6398-6404.

[252]

Uskoković V, Li W, Habelitz S. Amelogenin as a promoter of nucleation and crystal growth of apatite. J. Cryst. Growth, 2011, 316: 106-117.

[253]

Tarasevich BJ, . The nucleation and growth of calcium phosphate by amelogenin. J. Cryst. Growth, 2007, 304: 407-415.

[254]

Hannig M, Hannig C. Nanomaterials in preventive dentistry. Nat. Nanotechnol., 2010, 5: 565-569.

[255]

Uskoković V, Li W, Habelitz S. Biomimetic precipitation of uniaxially grown calcium phosphate crystals from full-length human amelogenin sols. J. Bionic Eng., 2011, 8: 114-121.

[256]

Fan Y, Sun Z, Wang R, Abbott C, Moradian-Oldak J. Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials, 2007, 28: 3034-3042.

[257]

Habelitz S, . Amelogenin-guided crystal growth on fluoroapatite glass-ceramics. J. Dent. Res., 2004, 83: 698-702.

[258]

Wen H, Moradian-Oldak J, Fincham AG. Modulation of apatite crystal growth on Bioglass® by recombinant amelogenin. Biomaterials, 1999, 20: 1717-1725.

[259]

Fan Y, . Novel amelogenin-releasing hydrogel for remineralization of enamel artificial caries. J. Bioact. Compat. Polym., 2012, 27: 585-603.

[260]

Ruan Q, . Efficacy of amelogenin-chitosan hydrogel in biomimetic repair of human enamel in pH-cycling systems. J. Biomed. Eng. Inf., 2016, 2: 119-128.

[261]

Ruan, Q. & Moradian-Oldak, J. Development of amelogenin-chitosan hydrogel for in vitro enamel regrowth with a dense interface. J. Visualized Exp., e51606 (2014).

[262]

Ruan Q, Siddiqah N, Li X, Nutt S, Moradian-Oldak J. Amelogenin–chitosan matrix for human enamel regrowth: effects of viscosity and supersaturation degree. Connect. Tissue Res., 2014, 55: 150-154.

[263]

Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J. An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater., 2013, 9: 7289-7297.

[264]

Uskoković V, . Hydrolysis of amelogenin by matrix metalloprotease-20 accelerates mineralization in vitro. Arch. Oral. Biol., 2011, 56: 1548-1559.

[265]

Prajapati S, Ruan Q, Mukherjee K, Nutt S, Moradian-Oldak J. The presence of MMP-20 reinforces biomimetic enamel regrowth. J. Dent. Res., 2017, 97: 84-90.

[266]

Dissanayake SSM, Ekambaram M, Li KC, Harris PWR, Brimble MA. Identification of key functional motifs of native amelogenin protein for dental enamel remineralisation. Molecules, 2020, 25: 4214.

[267]

Mukherjee K, Ruan Q, Liberman D, White S, Moradian-Oldak J. Repairing human tooth enamel with leucine-rich amelogenin peptide–chitosan hydrogel. J. Mater. Res., 2016, 31: 1-8.

[268]

Le Norcy E, . Leucine-rich amelogenin peptides regulate mineralization in vitro. J. Dent. Res., 2011, 90: 1091-1097.

[269]

Shafiei F, . Leucine-rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: an in vitro study. Scanning, 2015, 37: 179-185.

[270]

Ravindranath RMH, Devarajan A, Bringas P. Enamel formation in vitro in mouse molar explants exposed to amelogenin polypeptides: ATMP and LRAP on enamel development. Arch. Oral. Biol., 2007, 52: 1161-1171.

[271]

Kwak SY, Litman A, Margolis HC, Yamakoshi Y, Simmer JP. Biomimetic enamel regeneration mediated by leucine-rich amelogenin peptide. J. Dent. Res., 2017, 96: 524-530.

[272]

Hossein BG, . Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus X-ray computed tomography and nanoindentation. Biomed. Mater., 2015, 10: 035007.

[273]

Dogan S, . Biomimetic tooth repair: Amelogenin-derived peptide enables in vitro remineralization of human enamel. ACS Biomater. Sci. Eng., 2018, 4: 1788-1796.

[274]

Lv X, . Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries. Arch. Oral. Biol., 2015, 60: 1482-1487.

[275]

Ding L, . Remineralization of enamel caries by an amelogenin-derived peptide and fluoride. Vitr. Regen. Biomater., 2020, 7: 283-292.

[276]

Ren Q, . Anti-biofilm and remineralization effects of chitosan hydrogel containing amelogenin-derived peptide on initial caries lesions. Regen. Biomater., 2018, 5: 69-76.

[277]

Li D, . Remineralization of initial enamel caries. Vitr. using a Nov. Pept. based amelogenin. Front. Mater. Sci., 2015, 9: 293-302.

[278]

Li Z, . Comparing the efficacy of hydroxyapatite nucleation regulated by amino acids, poly-amino acids and an amelogenin-derived peptide. Cryst. Eng. Comm., 2020, 22: 3814-3823.

[279]

Ren Q, . Chitosan hydrogel containing amelogenin-derived peptide: Inhibition of cariogenic bacteria and promotion of remineralization of initial caries lesions. Arch. Oral. Biol., 2019, 100: 42-48.

[280]

Han S, . Promotion of enamel caries remineralization by an amelogenin-derived peptide in a rat model. Arch. Oral. Biol., 2017, 73: 66-71.

[281]

Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell–cell distance. Nat. Rev. Microbiol., 2010, 8: 471-480.

[282]

Hannig, M. & Joiner, A. In The Teeth and Their Environment (ed Duckworth, R. M.) Ch. 2 (Karger, 2006).

[283]

Hay DI. The interaction of human parotid salivary proteins with hydroxyapatite. Arch. Oral. Biol., 1973, 18: 1517-1529.

[284]

Hay DI, Smith DJ, Schluckebier SK, Moreno EC. Basic biological sciences relationship between concentration of human salivary statherin and inhibition of calcium phosphate precipitation in stimulated human parotid saliva. J. Dent. Res., 1984, 63: 857-863.

[285]

Johnsson M, Richardson CF, Bergey EJ, Levine MJ, Nancollas GH. The effects of human salivary cystatins and statherin on hydroxyapatite crystallization. Arch. Oral. Biol., 1991, 36: 631-636.

[286]

Raj PA, Johnsson M, Levine MJ, Nancollas GH. Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. J. Biol. Chem., 1992, 267: 5968-5976.

[287]

Li Y, . Hybrid nanotopographical surfaces obtained by biomimetic mineralization of statherin-inspired elastin-like recombinamers. Adv. Healthc. Mater., 2014, 3: 1638-1647.

[288]

Shuturminska K, . Elastin-like protein, with statherin derived peptide, controls fluorapatite formation and morphology. Front. Physiol., 2017, 8: 368.

[289]

Yang Y, . Salivary acquired pellicle-inspired DpSpSEEKC peptide for the restoration of demineralized tooth enamel. Biomed. Mater., 2017, 12: 025007.

[290]

Yang X, . A universal and ultrastable mineralization coating bioinspired from biofilms. Adv. Funct. Mater., 2018, 28: 1802730.

[291]

Yang X, . Bioinspired from mussel and salivary acquired pellicle: A universal dual-functional polypeptide coating for implant materials. Mater. Today Chem., 2019, 14: 100205.

[292]

Gou Y, . Bio-inspired peptide decorated dendrimers for a robust antibacterial coating on hydroxyapatite. Polym. Chem., 2017, 8: 4264-4279.

[293]

Liu Y, . Bioinspired heptapeptides as functionalized mineralization inducers with enhanced hydroxyapatite affinity. J. Mater. Chem. B, 2018, 6: 1984-1994.

[294]

Yang X, . Bioinspired from salivary acquired pellicle: a multifunctional coating for biominerals. Chem. Mater., 2017, 29: 5663-5670.

[295]

Yang X, . Antibacterial and anti-biofouling coating on hydroxyapatite surface based on peptide-modified tannic acid. Colloids Surf., B, 2017, 160: 136-143.

[296]

Yang X, . Bioinspired peptide-decorated tannic acid for in situ remineralization of tooth enamel: in vitro and in vivo evaluation. ACS Biomater. Sci. Eng., 2017, 3: 3553-3562.

[297]

Zhang S, . Effective in situ repair and bacteriostatic material of tooth enamel based on salivary acquired pellicle inspired oligomeric procyanidins. Polym. Chem., 2016, 7: 6761-6769.

[298]

Segman-Magidovich S, Grisaru H, Gitli T, Levi-Kalisman Y, Rapaport H. Matrices of acidic β-sheet peptides as templates for calcium phosphate mineralization. Adv. Mater., 2008, 20: 2156-2161.

[299]

Firth A, Aggeli A, Burke JL, Yang X, Kirkham J. Biomimetic self-assembling peptides as injectable scaffolds for hard tissue engineering. Nanomedicine, 2006, 1: 189-199.

[300]

Aggeli A, . pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases. J. Am. Chem. Soc., 2003, 125: 9619-9628.

[301]

Kind L, . Biomimetic remineralization of carious lesions by self-assembling peptide. J. Dent. Res., 2017, 96: 790-797.

[302]

Kirkham J, . Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res., 2007, 86: 426-430.

[303]

Philip N. State of the art enamel remineralization systems: the next frontier in caries management. Caries Res, 2019, 53: 284-295.

[304]

Brunton PA, . Treatment of early caries lesions using biomimetic self-assembling peptides—a clinical safety trial. Br. Dent. J., 2013, 215: E6.

[305]

Cui H, Webber MJ, Stupp SI. Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers, 2010, 94: 1-18.

[306]

Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294: 1684.

[307]

Li Q, . A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel. BMC Biotechnol., 2014, 14

[308]

George A, . The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl-phosphate interaction ridges that may be essential in the biomineralization process. J. Biol. Chem., 1996, 271: 32869-32873.

[309]

Chang S, . Synthesis of a potentially bioactive, hydroxyapatite-nucleating molecule. Calcif. Tissue Int., 2006, 78: 55-61.

[310]

Yang Y, . Synergistic inhibition of enamel demineralization by peptide 8DSS and fluoride. Caries Res., 2016, 50: 32-39.

[311]

Hsu C, Chung H, Yang J, Shi W, Wu B. Influence of 8DSS peptide on nano-mechanical behavior of human enamel. J. Dent. Res., 2010, 90: 88-92.

[312]

Yang Y, . 8DSS-promoted remineralization of initial enamel caries in vitro. J. Dent. Res., 2014, 93: 520-524.

[313]

Zheng W, . The effects of 8DSS peptide on remineralization in a rat model of enamel caries evaluated by two nondestructive techniques. J. Appl. Biomater. Funct. Mater., 2019, 17: 2280800019827798.

[314]

Hsu C, Chung H, Yang J, Shi W, Wu B. Influences of ionic concentration on nanomechanical behaviors for remineralized enamel. J. Mech. Behav. Biomed. Mater., 2011, 4: 1982-1989.

[315]

Chung H, Li C, Hsu C. Characterization of the effects of 3DSS peptide on remineralized enamel in artificial saliva. J. Mech. Behav. Biomed. Mater., 2012, 6: 74-79.

[316]

Chung H, Li C. Microstructure and nanomechanical properties of enamel remineralized with asparagine–serine–serine peptide. Mater. Sci. Eng., C., 2013, 33: 969-973.

[317]

Chung H, Huang K. Effects of peptide concentration on remineralization of eroded enamel. J. Mech. Behav. Biomed. Mater., 2013, 28: 213-221.

[318]

Li C, Xu L, Zuo YY, Yang P. Tuning protein assembly pathways through superfast amyloid-like aggregation. Biomater. Sci., 2018, 6: 836-841.

[319]

Wang D, . 2D protein supramolecular nanofilm with exceptionally large area and emergent functions. Adv. Mater., 2016, 28: 7414-7423.

[320]

Liu R, . One-step assembly of a biomimetic biopolymer coating for particle surface engineering. Adv. Mater., 2018, 30: 1802851.

[321]

Carneiro KMM, . Amyloid-like ribbons of amelogenins in enamel mineralization. Sci. Rep., 2016, 6

[322]

Zhang J, Wang J, Ma C, Lu J. Hydroxyapatite formation coexists with amyloid-like self-assembly of human amelogenin. Int. J. Mol. Sci., 2020, 21: 2946.

[323]

Deutsch D, . Tuftelin—aspects of protein and gene structure. Eur. J. Oral. Sci., 1998, 106: 315-323.

[324]

Deutsch D, . The human tuftelin gene and the expression of tuftelin in mineralizing and nonmineralizing tissues. Connect. Tissue Res., 2002, 43: 425-434.

[325]

Ding L, . Tuftelin-derived peptide facilitates remineralization of initial enamel caries in vitro. J. Biomed. Mater. Res. B, 2020, 108: 3261-3269.

[326]

Yan S, . Effect of anionic PAMAM with amido groups starburst dendrimers on the crystallization of Ca10(PO4)6(OH)2 by hydrothermal method. Mater. Chem. Phys., 2006, 99: 164-169.

[327]

Xie L, . Effects of glutamic acid shelled PAMAM dendrimers on the crystallization of calcium phosphate in diffusion systems. Polym. Bull., 2011, 66: 119-132.

[328]

Zhang F, . Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer. Mater. Lett., 2005, 59: 1422-1425.

[329]

Zhou Z, Zhou P, Yang S, Yu X, Yang L. Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process. Mater. Res. Bull., 2007, 42: 1611-1618.

[330]

Chen H, Banaszak Holl M, Orr BG, Majoros I, Clarkson BH. Interaction of dendrimers (artificial proteins) with biological hydroxyapatite crystals. J. Dent. Res., 2003, 82: 443-448.

[331]

Xin J, . Phosphorylated dendronized poly(amido amine)s as protein analogues for directing hydroxylapatite biomineralization. Chem. Commun., 2014, 50: 6491-6493.

[332]

Chen L, . Regeneration of biomimetic hydroxyapatite on etched human enamel by anionic PAMAM template in vitro. Arch. Oral. Biol., 2013, 58: 975-980.

[333]

Chen L, Yuan H, Tang B, Liang K, Li J. Biomimetic remineralization of human enamel in the presence of polyamidoamine dendrimers in vitro. Caries Res., 2015, 49: 282-290.

[334]

Fan M, . Remineralization effectiveness of the PAMAM dendrimer with different terminal groups on artificial initial enamel caries in vitro. Dent. Mater., 2020, 36: 210-220.

[335]

Gao Y, . Enamel remineralization via poly(amido amine) and adhesive resin containing calcium phosphate nanoparticles. J. Dent., 2020, 92: 103262.

[336]

Zhang X, . Biomimetic remineralization of demineralized enamel with nano-complexes of phosphorylated chitosan and amorphous calcium phosphate. J. Mater. Sci.: Mater. Med., 2014, 25: 2619-2628.

[337]

Xiao Z, . Rapid biomimetic remineralization of the demineralized enamel surface using nano-particles of amorphous calcium phosphate guided by chimaeric peptides. Dent. Mater., 2017, 33: 1217-1228.

[338]

Wang H, . Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine. Sci. Rep., 2017, 7

[339]

Onuma K, Yamagishi K, Oyane A. Nucleation and growth of hydroxyapatite nanocrystals for nondestructive repair of early caries lesions. J. Cryst. Growth, 2005, 282: 199-207.

[340]

Li L, . Repair of enamel by using hydroxyapatite nanoparticles as the building blocks. J. Mater. Chem., 2008, 18: 4079-4084.

[341]

Li L, . Bio-inspired enamel repair via Glu-directed assembly of apatite nanoparticles: an approach to biomaterials with optimal characteristics. Adv. Mater., 2011, 23: 4695-4701.

[342]

Nassif N, . Amorphous layer around aragonite platelets in nacre. Proc. Natl Acad. Sci. USA, 2005, 102: 12653.

[343]

DeVol RT, . Nanoscale transforming mineral phases in fresh nacre. J. Am. Chem. Soc., 2015, 137: 13325-13333.

[344]

Mass T, . Amorphous calcium carbonate particles form coral skeletons. Proc. Natl Acad. Sci. USA, 2017, 114: E7670.

[345]

Liu Z, . Crosslinking ionic oligomers as conformable precursors to calcium carbonate. Nature, 2019, 574: 394-398.

[346]

DeRocher KA, . Chemical gradients in human enamel crystallites. Nature, 2020, 583: 66-71.

[347]

Qiu Z, . Mineralized collagen: rationale, current status, and clinical applications. Materials, 2015, 8: 4733-4750.

[348]

Ye Z, . Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioact. Mater., 2021, 6: 2250-2260.

[349]

Liu H, . Doping bioactive elements into a collagen scaffold based on synchronous self-assembly/mineralization for bone tissue engineering. Bioact. Mater., 2020, 5: 844-858.

[350]

Wan Q, . Simultaneous regeneration of bone and nerves through materials and architectural design: are we there yet?. Adv. Funct. Mater., 2020, 30: 2003542.

[351]

Yin S, Zhang W, Zhang Z, Jiang X. Recent advances in scaffold design and material for vascularized tissue-engineered bone regeneration. Adv. Healthc. Mater., 2019, 8: 1801433.

Funding

National Natural Science Foundation of China (National Science Foundation of China)(51925304, 51903175)

AI Summary AI Mindmap
PDF

245

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/