Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells

Tong Xu , Qin Dong , Yuxiao Luo , Yanqing Liu , Liang Gao , Yaping Pan , Dongmei Zhang

International Journal of Oral Science ›› 2021, Vol. 13 ›› Issue (1) : 28

PDF
International Journal of Oral Science ›› 2021, Vol. 13 ›› Issue (1) : 28 DOI: 10.1038/s41368-021-00134-4
Article

Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells

Author information +
History +
PDF

Abstract

Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontitis, has been shown to accelerate the progression of atherosclerosis (AS). However, the definite mechanisms remain elusive. Emerging evidence supports an association between mitochondrial dysfunction and AS. In our study, the impact of P. gingivalis on mitochondrial dysfunction and the potential mechanism were investigated. The mitochondrial morphology of EA.hy926 cells infected with P. gingivalis was assessed by transmission electron microscopy, mitochondrial staining, and quantitative analysis of the mitochondrial network. Fluorescence staining and flow cytometry analysis were performed to determine mitochondrial reactive oxygen species (mtROS) and mitochondrial membrane potential (MMP) levels. Cellular ATP production was examined by a luminescence assay kit. The expression of key fusion and fission proteins was evaluated by western blot and immunofluorescence. Mdivi-1, a specific Drp1 inhibitor, was used to elucidate the role of Drp1 in mitochondrial dysfunction. Our findings showed that P. gingivalis infection induced mitochondrial fragmentation, increased the mtROS levels, and decreased the MMP and ATP concentration in vascular endothelial cells. We observed upregulation of Drp1 (Ser616) phosphorylation and translocation of Drp1 to mitochondria. Mdivi-1 blocked the mitochondrial fragmentation and dysfunction induced by P. gingivalis. Collectively, these results revealed that P. gingivalis infection promoted mitochondrial fragmentation and dysfunction, which was dependent on Drp1. Mitochondrial dysfunction may represent the mechanism by which P. gingivalis exacerbates atherosclerotic lesions.

Cite this article

Download citation ▾
Tong Xu, Qin Dong, Yuxiao Luo, Yanqing Liu, Liang Gao, Yaping Pan, Dongmei Zhang. Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells. International Journal of Oral Science, 2021, 13(1): 28 DOI:10.1038/s41368-021-00134-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Socransky SS, Haffajee AD, Cugini MA, Kent RJ. Microbial complexes in subgingival plaque. J. Clin. Periodontol., 1998, 25: 134-144.

[2]

Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J. Periodontol., 2000, 71: 1554-1560.

[3]

Jaden SL, . In situ intraepithelial localizations of opportunistic pathogens, Porphyromonas gingivalis and filifactor alocis, in human gingiva. Curr. Res. Microb. Sci., 2010, 1: 7-17.

[4]

Cavrini F, . Molecular detection of Treponema denticola and Porphyromonas gingivalis in carotid and aortic atheromatous plaques by FISH: report of two cases. J. Med. Microbiol., 2005, 54: 93-96.

[5]

Rath SK, Mukherjee M, Kaushik R, Sen S, Kumar M. Periodontal pathogens in atheromatous plaque. Indian J. Pathol. Microbiol., 2014, 57: 259-264.

[6]

Pothineni N, . Infections, atherosclerosis, and coronary heart disease. Eur. Heart J., 2017, 38: 3195-3201.

[7]

Gibson FC, . Innate immune recognition of invasive bacteria accelerates atherosclerosis in apolipoprotein E-deficient mice. Circulation, 2004, 109: 2801-2806.

[8]

Xuan Y, Shi Q, Liu GJ, Luan QX, Cai Y. Porphyromonas gingivalis infection accelerates atherosclerosis mediated by oxidative stress and inflammatory responses in ApoE-/- Mice. Clin. Lab, 2017, 63: 1627-1637.

[9]

Li L, Messas E, Batista EL, Levine RA, Amar S. Porphyromonas gingivalis infection accelerates the progression of atherosclerosis in a heterozygous apolipoprotein E-deficient murine model. Circulation, 2002, 10: 861-867.

[10]

Kim HJ, . Porphyromonas gingivalis accelerates atherosclerosis through oxidation of high-density lipoprotein. J. Periodontal Implant Sci., 2018, 48: 60-68.

[11]

Xie M, . Porphyromonas gingivalis disrupts vascular endothelial homeostasis in a TLR-NF-κB axis dependent manner. Int. J. Oral. Sci., 2020, 12: 28.

[12]

Oliveira HCF, Vercesi AE. Mitochondrial bioenergetics and redox dysfunctions in hypercholesterolemia and atherosclerosis. Mol. Asp. Med., 2020, 71: 100840.

[13]

Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ. Res., 2007, 100: 460-473.

[14]

Peng W, . Mitochondrial dysfunction in atherosclerosis. DNA Cell Biol., 2019, 38: 597-606.

[15]

Mercer JR, . DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ. Res., 2010, 107: 1021-1031.

[16]

Xie M, . BMAL1-downregulation aggravates-induced atherosclerosis by encouraging oxidative stress. Circ. Res, 2020, 126: e15-e29.

[17]

Zahlten J, . Porphyromonas gingivalis dihydroceramides induce apoptosis in endothelial cells. J. Dent. Res., 2007, 86: 635-640.

[18]

Bartruff JB, Yukna RA, Layman DL. Outer membrane vesicles from Porphyromonas gingivalis affect the growth and function of cultured human gingival fibroblasts and umbilical vein endothelial cells. J. Periodontol., 2005, 76: 972-979.

[19]

Roth GA, . Infection with a periodontal pathogen increases mononuclear cell adhesion to human aortic endothelial cells. Atherosclerosis, 2007, 190: 271-281.

[20]

Zhang D, . Porphorymonas gingivalis induces intracellular adhesion molecule-1 expression in endothelial cells through the nuclear factor-kappaB pathway, but not through the p38 MAPK pathway. J. Periodontal Res., 2011, 46: 31-38.

[21]

Xu W, . Porphyromonas gingivalis ATCC 33277 promotes intercellular adhesion molecule-1 expression in endothelial cells and monocyte-endothelial cell adhesion through macrophage migration inhibitory factor. BMC Microbiol., 2018, 18: 1.

[22]

Wu Y, . Porphyromonas gingivalis-induced MIF regulates intercellular adhesion molecule-1 expressionin EA.hy926 cells and monocyte-endothelial cell adhesion through the receptors CD74 and CXCR4. Inflammation, 2019, 42: 874-883.

[23]

Popović M, . Human cytomegalovirus infection and atherothrombosis. J. Thromb. Thrombolysis, 2011, 33: 160-172.

[24]

Li L, Michel R, Cohen J, Decarlo A, Kozarov E. Intracellular survival and vascular cell-to-cell transmission of Porphyromonas gingivalis. BMC Microbiol., 2008, 8: 26.

[25]

Cassidy-Stone A, . Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev. Cell, 2008, 14: 193-204.

[26]

van der Bliek, A. M., Shen, Q. & Kawajiri, S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harbor Perspect. Biol. 5, a011072 (2013).

[27]

Otera H, Ishihara N, Mihara K. New insights into the function and regulation of mitochondrial fission. Biochim. Biophys. Acta, 2013, 1833: 1256-1268.

[28]

Sebastián D, Palacín M, Zorzano A. Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging. Trends Mol. Med., 2017, 23: 201-215.

[29]

Kowaltowski AJ, . Mitochondrial morphology regulates organellar Ca(2+) uptake and changes cellular Ca(2+) homeostasis. FASEB J., 2019, 33: 13176-13188.

[30]

Victor VM, Apostolova N, Herance R, Hernandez-Mijares A, Rocha M. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Curr. Med. Chem., 2009, 16: 4654-4667.

[31]

Holvoet P, . Low cytochrome oxidase 1 links mitochondrial dysfunction to atherosclerosis in mice and pigs. PLoS ONE, 2017, 12: 1-12.

[32]

Fleetwood AJ, . Metabolic remodeling, inflammasome activation, and pyroptosis in macrophages stimulated by Porphyromonas gingivalis and its outer membrane vesicles. Front. Cell Infect. Microbiol., 2017, 7: 351.

[33]

Yeh H, Kuo L, Sung F, Yeh C. Association between polymorphisms of antioxidant gene (MnSOD, CAT, and GPx1) and risk of coronary artery disease. BioMed. Res. Int., 2018, 2018: 1-8.

[34]

Yilmaz O, Jungas T, Verbeke P, Ojcius DM. Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect. Immun., 2004, 72: 3743-3751.

[35]

Boisvert H, Duncan MJ. Translocation of Porphyromonas gingivalis gingipain adhesin peptide A44 to host mitochondria prevents apoptosis. Infect. Immun., 2010, 78: 3616-3624.

[36]

Mao S, . Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol., 2007, 9: 1997-2007.

[37]

Choi CH, . Porphyromonas gingivalis-nucleoside-diphosphate-kinase inhibits ATP-induced reactive-oxygen-species via P2X7 receptor/NADPH-oxidase signalling and contributes to persistence. Cell Microbiol., 2013, 15: 961-976.

[38]

Robert JS, . Opportunistic pathogen Porphyromonas gingivalis modulates danger signal ATP-mediated antibacterial NOX2 pathways in primary epithelial cells. Front. Cell Infect. Microbiol., 2017, 7: 291.

[39]

Li Q, . Porphyromonas gingivalis degrades integrin β1 and induces AIF-mediated apoptosis of epithelial cells. Infect. Dis. (Lond.), 2019, 51: 793-801.

[40]

Dogan S, Gunzer F, Guenay H, Hillmann G, Geurtsen W. Infection of primary human gingival fibroblasts by Porphyromonas gingivalis and Prevotella intermedia. Clin. Oral. Invest., 2000, 4: 35-41.

[41]

Wu HC, . P38 mitogen-activated protein kinase pathways are involved in the hypertrophy and apoptosis of cardiomyocytes induced by Porphyromonas gingivalis conditioned medium. Cell Biochem. Funct., 2008, 26: 246-255.

[42]

Li X, Wang X, Zheng M, Luan QX. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts. Exp. Cell Res., 2016, 347: 212-221.

[43]

Bullón P, . Lipophilic antioxidants prevent lipopolysaccharide-induced mitochondrial dysfunction through mitochondrial biogenesis improvement. Pharmacol. Res., 2015, 91: 1-8.

[44]

Napa K, . LPS from P. gingivalis negatively alters gingival cell mitochondrial bioenergetics. Int. J. Dent., 2017, 2017: 2697210-2697216.

[45]

Bullon P, . Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation. BMC Med., 2012, 10

[46]

Liu J, Zeng J, Wang X, Zheng M, Luan Q. P53 mediates lipopolysaccharide-induced inflammation in human gingival fibroblasts. J. Periodontol., 2018, 89: 1142-1151.

[47]

Zhu C, . The therapeutic role of baicalein in combating experimental periodontitis with diabetes via Nrf2 antioxidant signaling pathway. J. Periodontal Res., 2020, 55: 1-11.

[48]

Herath TDK, . Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts. Sci. Rep., 2016, 6

[49]

Smirnova E, Shurland DL, Ryazantsev SN, van der Bliek AM. A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol., 1998, 143: 351-358.

[50]

Ingerman E, . Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol., 2005, 170: 1021-1027.

[51]

Bo T, . Calmodulin-dependent protein kinase II (CaMKII) mediates radiation-induced mitochondrial fission by regulating the phosphorylation of dynamin-related protein 1 (Drp1) at serine 616. Biochem. Biophys. Res. Commun., 2018, 495: 1601-1607.

[52]

Singh S, Sharma S. Dynamin-related protein-1 as potential therapeutic target in various diseases. Inflammopharmacology, 2017, 25: 383-392.

[53]

Chuang Y, . Peroxisome proliferator-activated receptor-gamma dependent pathway reduces the phosphorylation of dynamin-related protein 1 and ameliorates hippocampal injury induced by global ischemia in rats. J. Biomed. Sci., 2016, 23: 44.

[54]

Bossy B, . S-nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J. Alzheimer’s Dis., 2010, 20: S513-S526.

[55]

Shi Y, . FOXO1 inhibition potentiates endothelial angiogenic functions in diabetes via suppression of ROCK1/Drp1-mediated mitochondrial fission. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864: 2481-2494.

[56]

Koopman WJ, Visch HJ, Smeitink JA, Willems PH. Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts. Cytom. A, 2006, 69: 1-12.

Funding

National Natural Science Foundation of China (National Science Foundation of China)(81870771)

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/