External cervical resorption—a review of pathogenesis and potential predisposing factors

Yiming Chen , Ying Huang , Xuliang Deng

International Journal of Oral Science ›› 2021, Vol. 13 ›› Issue (1) : 19

PDF
International Journal of Oral Science ›› 2021, Vol. 13 ›› Issue (1) : 19 DOI: 10.1038/s41368-021-00121-9
Review Article

External cervical resorption—a review of pathogenesis and potential predisposing factors

Author information +
History +
PDF

Abstract

External cervical resorption (ECR) refers to a pathological state in which resorption tissues penetrate into the dentin at the cervical aspect of the root. Despite being latent in its initial phase, ECR could cause severe damage to mineralized dental tissue and even involve the pulp if not given timely diagnosis and treatment. Nevertheless, the etiology of ECR is still poorly understood, which adds to the difficulty in early diagnosis. ECR has received growing attention in recent years due to the increasing number of clinical cases. Several potential predisposing factors have been recognized in cross-sectional studies as well as case reports. In the meantime, studies on histopathology and pathogenesis have shed light on possible mechanisms of ECR. This review aims to summarize the latest findings in the pathogenesis and potential predisposing factors of ECR, so as to provide pragmatic reference for clinical practice.

Cite this article

Download citation ▾
Yiming Chen, Ying Huang, Xuliang Deng. External cervical resorption—a review of pathogenesis and potential predisposing factors. International Journal of Oral Science, 2021, 13(1): 19 DOI:10.1038/s41368-021-00121-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Patel S, Kanagasingam S, Pitt Ford T. External cervical resorption: a review. J. Endod., 2009, 35: 616-625.

[2]

Aidos H, Diogo P, Santos JM. Root resorption classifications: a narrative review and a clinical aid proposal for routine assessment. Eur. Endod. J., 2018, 3: 134-145.

[3]

Patel S, Ford TP. Is the resorption external or internal?. Dent. Update, 2007, 34: 218-220. 222, 224–216, 229

[4]

Tronstad L. Root resorption—etiology, terminology and clinical manifestations. Endod. Dent. Traumatol., 1988, 4: 241-252.

[5]

Trope M. Root resorption of dental and traumatic origin: classification based on etiology. Pract. Periodontics Aesthet. Dent., 1998, 10: 515-522.

[6]

Heithersay GS. Clinical, radiologic, and histopathologic features of invasive cervical resorption. Quintessence Int., 1999, 30: 27-37.

[7]

Mavridou AM, . Understanding external cervical resorption in vital teeth. J. Endod., 2016, 42: 1737-1751.

[8]

Bergmans L, . Cervical external root resorption in vital teeth. J. Clin. Periodontol., 2002, 29: 580-585.

[9]

Patel J, Beddis HP. How to assess and manage external cervical resorption. Br. Dent. J., 2019, 227: 695-701.

[10]

Heithersay GS. Invasive cervical resorption: an analysis of potential predisposing factors. Quintessence Int., 1999, 30: 83-95.

[11]

Gulsahi A. Clinical and radiologic appearances of invasive cervical resorption. J. Oral Health Dent. Manag., 2014, 13: 934-939.

[12]

Llavayol M, Pons M, Ballester ML, Berástegui E. Multiple cervical root resorption in a young adult female previously treated with chemotherapy: a case report. J. Endod., 2019, 45: 349-353.

[13]

Patel S, Mavridou AM, Lambrechts P, Saberi N. External cervical resorption—part 1: histopathology, distribution and presentation. Int. Endod. J., 2018, 51: 1205-1223.

[14]

Patel S, Lambrechts P, Shemesh H, Mavridou A. European Society of Endodontology position statement: external cervical resorption. Int. Endod. J., 2018, 51: 1323-1326.

[15]

Jebril A, Aljamani S, Jarad F. The surgical management of external cervical resorption: a Retrospective Observational Study of Treatment Outcomes and Classifications. J. Endod., 2020, 46: 778-785.

[16]

Polimeni G, Xiropaidis AV, Wikesjö UM. Biology and principles of periodontal wound healing/regeneration. Periodontology 2000, 2006, 41: 30-47.

[17]

Rumpler M, . Osteoclasts on bone and dentin in vitro: mechanism of trail formation and comparison of resorption behavior. Calcif. Tissue Int., 2013, 93: 526-539.

[18]

Segeletz S, Hoflack B. Proteomic approaches to study osteoclast biology. Proteomics, 2016, 16: 2545-2556.

[19]

Wiebe SH, Hafezi M, Sandhu HS, Sims SM, Dixon SJ. Osteoclast activation in inflammatory periodontal diseases. Oral Dis., 1996, 2: 167-180.

[20]

Foster BL. Methods for studying tooth root cementum by light microscopy. Int. J. Oral Sci., 2012, 4: 119-128.

[21]

Zhao N, . Isolation and functional analysis of an immortalized murine cementocyte cell line, IDG-CM6. J. Bone Mineral Res., 2016, 31: 430-442.

[22]

Neuvald L, Consolaro A. Cementoenamel junction: microscopic analysis and external cervical resorption. J. Endod., 2000, 26: 503-508.

[23]

Nanci A. Ten Cate’s oral histology: development, structure, and function. Mosby (2017).

[24]

Domon T, . Electron microscopic and histochemical studies of the mononuclear odontoclast of the human. Anat. Rec., 1994, 240: 42-51.

[25]

Kandalgaonkar SD, Gharat LA, Tupsakhare SD, Gabhane MH. Invasive cervical resorption: a review. J. Int. Oral Health, 2013, 5: 124-130.

[26]

Raynal C, Delmas PD, Chenu C. Bone sialoprotein stimulates in vitro bone resorption. Endocrinology, 1996, 137: 2347-2354.

[27]

Heithersay GS. Invasive cervical resorption. Endod. Top., 2004, 7: 73-92.

[28]

Harrington GW, Natkin E. External resorption associated with bleaching of pulpless teeth. J. Endod., 1979, 5: 344-348.

[29]

Goon WW, Cohen S, Borer RF. External cervical root resorption following bleaching. J. Endod., 1986, 12: 414-418.

[30]

Mavridou AM, . Understanding external cervical resorption patterns in endodontically treated teeth. Int. Endod. J., 2017, 50: 1116-1133.

[31]

Fuss Z, Tsesis I, Lin S. Root resorption—diagnosis, classification and treatment choices based on stimulation factors. Dent. Traumatol., 2003, 19: 175-182.

[32]

Hienz SA, Paliwal S, Ivanovski S. Mechanisms of bone resorption in periodontitis. J. Immunol. Res., 2015, 2015: 615486.

[33]

Zhang D, Goetz W, Braumann B, Bourauel C, Jaeger A. Effect of soluble receptors to interleukin-1 and tumor necrosis factor alpha on experimentally induced root resorption in rats. J. Periodontal Res., 2003, 38: 324-332.

[34]

Alhashimi N, Frithiof L, Brudvik P, Bakhiet M. Orthodontic tooth movement and de novo synthesis of proinflammatory cytokines. Am. J. Orthod. Dentofac. Orthop., 2001, 119: 307-312.

[35]

Discacciati JA, . Invasive cervical resorption: etiology, diagnosis, classification and treatment. J. Contemp. Dent. Pract., 2012, 13: 723-728.

[36]

Oates TW, Cochran DL. Bone cell interactions and regulation by inflammatory mediators. Curr. Opin. Periodontol., 1996, 3: 34-44.

[37]

Teitelbaum SL. Bone resorption by osteoclasts. Science, 2000, 289: 1504-1508.

[38]

Bar-Shavit Z. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J. Cell. Biochem., 2007, 102: 1130-1139.

[39]

Nagasawa T, . Roles of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in periodontal health and disease. Periodontology 2000, 2007, 43: 65-84.

[40]

Iglesias-Linares A, Hartsfield JK Jr.. Cellular and molecular pathways leading to external root resorption. J. Dent. Res., 2017, 96: 145-152.

[41]

Cheng R, Wu Z, Li M, Shao M, Hu T. Interleukin-1β is a potential therapeutic target for periodontitis: a narrative review. Int. J. Oral Sci., 2020, 12: 2.

[42]

Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int. J. Oral Sci., 2019, 11: 30.

[43]

Pereira, M. et al. Common signalling pathways in macrophage and osteoclast multinucleation. J. Cell Sci. 131, https://doi.org/10.1242/jcs.216267 (2018).

[44]

Yang J, . Enhanced activity of macrophage M1/M2 phenotypes in periodontitis. Arch. Oral Biol., 2018, 96: 234-242.

[45]

He D, . Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J. Dent. Res., 2015, 94: 129-139.

[46]

MacDonald BR. Parathyroid hormone, prostaglandins and bone resorption. World Rev. Nutr. Diet., 1986, 47: 163-201.

[47]

Poole KE, Reeve J. Parathyroid hormone—a bone anabolic and catabolic agent. Curr. Opin. Pharm., 2005, 5: 612-617.

[48]

Li T, Yu YT, Wang J, Tang TS. 1,25-Dihydroxyvitamin D3 stimulates bone neovascularization by enhancing the interactions of osteoblasts-like cells and endothelial cells. J. Biomed. Mater. Res. A, 2008, 86: 583-588.

[49]

Seifi M, Eslami B, Saffar AS. The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats. Eur. J. Orthod., 2003, 25: 199-204.

[50]

Black DM, Rosen CJ. Clinical practice. Postmenopausal osteoporosis. N. Engl. J. Med., 2016, 374: 254-262.

[51]

Wu J, . Multiple idiopathic cervical root resorption: a case report. Int. Endod. J., 2016, 49: 189-202.

[52]

Jeng PY, . Invasive cervical resorption-distribution, potential predisposing factors, and clinical characteristics. J. Endod., 2020, 46: 475-482.

[53]

Chen X, . Multiple idiopathic cervical root resorption involving all permanent teeth. Aust. Endod. J., 2020, 46: 263-271.

[54]

Pettiette MT, . MicroRNA expression profiles in external cervical resorption. J. Endod., 2019, 45: 1106-1113. e1102

[55]

Zhang JF, . MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol., 2011, 8: 829-838.

[56]

Jing D, . The role of microRNAs in bone remodeling. Int. J. Oral Sci., 2015, 7: 131-143.

[57]

Jaiswal A, Reddy SS, Maurya M, Maurya P, Barthwal MK. MicroRNA-99a mimics inhibit M1 macrophage phenotype and adipose tissue inflammation by targeting TNFα. Cell. Mol. Immunol., 2019, 16: 495-507.

[58]

Naqvi AR, Fordham JB, Nares S. MicroRNA target Fc receptors to regulate Ab-dependent Ag uptake in primary macrophages and dendritic cells. Innate Immun., 2016, 22: 510-521.

[59]

Thumbigere-Math V, . Inactivating mutation in IRF8 promotes osteoclast transcriptional programs and increases susceptibility to tooth root resorption. J. Bone Mineral Res., 2019, 34: 1155-1168.

[60]

Zhao B, . Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat. Med., 2009, 15: 1066-1071.

[61]

Mavridou AM, Bergmans L, Barendregt D, Lambrechts P. Descriptive analysis of factors associated with external cervical resorption. J. Endod., 2017, 43: 1602-1610.

[62]

Darcey J, Qualtrough A. Resorption: part 1. Pathology, classification and aetiology. Br. Dent. J., 2013, 214: 439-451.

[63]

Macdonald-Jankowski D. Multiple idiopathic cervical root resorption most frequently seen in younger females. Evid. Based Dent., 2005, 6: 20.

[64]

Neely AL, Thumbigere-Math V, Somerman MJ, Foster BL. A familial pattern of multiple idiopathic cervical root resorption with a 30-year follow-up. J. Periodontol., 2016, 87: 426-433.

[65]

Atabek D, Alaçam A, Aydintuğ I, Konakoğlu G. A retrospective study of traumatic dental injuries. Dent. Traumatol., 2014, 30: 154-161.

[66]

Irinakis E, Aleksejuniene J, Shen Y, Haapasalo M. External cervical resorption: a Retrospective Case-Control Study. J. Endod., 2020, 46: 1420-1427.

[67]

Haapasalo M. Level of evidence in endodontics: what does it mean?. Endod. Top., 2016, 34: 30-41.

[68]

Elhaddaoui R, Qoraich HS, Bahije L, Zaoui F. Orthodontic aligners and root resorption: a systematic review. Int Orthod., 2017, 15: 1-12.

[69]

Deng Y, Sun Y, Xu T. Evaluation of root resorption after comprehensive orthodontic treatment using cone beam computed tomography (CBCT): a meta-analysis. BMC Oral Health, 2018, 18

[70]

Gu Y, McNamara JA Jr., Sigler LM, Baccetti T. Comparison of craniofacial characteristics of typical Chinese and Caucasian young adults. Eur. J. Orthod., 2011, 33: 205-211.

[71]

Chong HT, . Comparison of White and Chinese perception of esthetic Chinese lip position. Angle Orthod., 2014, 84: 246-253.

[72]

Linge L, Linge BO. Patient characteristics and treatment variables associated with apical root resorption during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop., 1991, 99: 35-43.

[73]

Mirabella AD, Artun J. Risk factors for apical root resorption of maxillary anterior teeth in adult orthodontic patients. Am. J. Orthod. Dentofac. Orthop., 1995, 108: 48-55.

[74]

Roscoe MG, Meira JB, Cattaneo PM. Association of orthodontic force system and root resorption: a systematic review. Am. J. Orthod. Dentofac. Orthop., 2015, 147: 610-626.

[75]

Weltman B, Vig KW, Fields HW, Shanker S, Kaizar EE. Root resorption associated with orthodontic tooth movement: a systematic review. Am. J. Orthod. Dentofac. Orthop., 2010, 137: 462-476. discussion 412A

[76]

Dudic A, Giannopoulou C, Meda P, Montet X, Kiliaridis S. Orthodontically induced cervical root resorption in humans is associated with the amount of tooth movement. Eur. J. Orthod., 2017, 39: 534-540.

[77]

Hohmann A, . Correspondences of hydrostatic pressure in periodontal ligament with regions of root resorption: a clinical and a finite element study of the same human teeth. Comput. Methods Prog. Biomed., 2009, 93: 155-161.

[78]

Kvam E. Cellular dynamics on the pressure side of the rat periodontium following experimental tooth movement. Scand. J. Dent. Res., 1972, 80: 369-383.

[79]

Andreasen JO. Luxation of permanent teeth due to trauma. A clinical and radiographic follow-up study of 189 injured teeth. Scand. J. Dent. Res., 1970, 78: 273-286.

[80]

Abbott PV. Prevention and management of external inflammatory resorption following trauma to teeth. Aust. Dent. J., 2016, 61: 82-94.

[81]

Andreasen JO, Bakland LK, Andreasen FM. Traumatic intrusion of permanent teeth. Part 2. A clinical study of the effect of preinjury and injury factors, such as sex, age, stage of root development, tooth location, and extent of injury including number of intruded teeth on 140 intruded permanent teeth. Dent. Traumatol., 2006, 22: 90-98.

[82]

Soares AJ, . Frequency of root resorption following trauma to permanent teeth. J. Oral Sci., 2015, 57: 73-78.

[83]

Malikaew P, Watt RG, Sheiham A. Prevalence and factors associated with traumatic dental injuries (TDI) to anterior teeth of 11–13 year old Thai children. Community Dent. Health, 2006, 23: 222-227.

[84]

Heithersay GS. Invasive cervical resorption following trauma. Aust. Endod. J., 1999, 25: 79-85.

[85]

Andreasen, J. O., Andreasen, F. M. & Andreasen, L. Textbook and Color Atlas of Traumatic Injuries to the Teeth (Blackwell Munksgaard, 2018).

[86]

Andreasen JO, Andreasen FM, Andersson L, . Effect of root planing on surface topography: an in-vivo randomized experimental trial. J. Periodontal Res., 2018, 50: 205-210.

[87]

Maritato M, . Root surface alterations following manual and mechanical scaling: a comparative study. Int. J. Dent. Hyg., 2018, 16: 553-558.

[88]

Draenert ME, Jakob M, Kunzelmann KH, Hickel R. The prevalence of tooth hypersensitivity following periodontal therapy with special reference to root scaling. A systematic review of the literature. Am. J. Dent., 2013, 26: 21-27.

[89]

Magnusson I, Nyman S, Karring T, Egelberg J. Connective tissue attachment formation following exclusion of gingival connective tissue and epithelium during healing. J. Periodontal Res., 1985, 20: 201-208.

[90]

Cury PR, Furuse C, Martins MT, Sallum EA, De Araújo NS. Root resorption and ankylosis associated with guided tissue regeneration. J. Am. Dent. Assoc., 2005, 136: 337-341.

[91]

Blomlöf L, Lindskog S. Cervical root resorption associated with guided tissue regeneration: a case report. J. Periodontol., 1998, 69: 392-395.

[92]

Yilmaz HG, Kalender A, Cengiz E. Use of mineral trioxide aggregate in the treatment of invasive cervical resorption: a case report. J. Endod., 2010, 36: 160-163.

[93]

Anderson DJ, Ronning GA. Dye diffusion in human dentine. Arch. Oral Biol., 1962, 7: 505-512.

[94]

Avny WY, Heiman GR, Madonia JV, Wood NK, Smulson MH. Autoradiographic studies of the intracanal diffusion of aqueous and camphorated parachlorophenol in endodontics. Oral Surg. Oral Med. Oral Pathol., 1973, 36: 80-89.

[95]

Taylor GN, Madonia JV, Wood NK, Heuer MA. In vivo autoradiographic study of relative penetrating abilities of aqueous 2% parachlorophenol and cambhorated 35% parachlorophenol. J. Endod., 1976, 2: 81-86.

[96]

Lewinstein I, Hirschfeld Z, Stabholz A, Rotstein I. Effect of hydrogen peroxide and sodium perborate on the microhardness of human enamel and dentin. J. Endod., 1994, 20: 61-63.

[97]

Rotstein I, Lehr Z, Gedalia I. Effect of bleaching agents on inorganic components of human dentin and cementum. J. Endod., 1992, 18: 290-293.

[98]

Rotstein I, . Histochemical analysis of dental hard tissues following bleaching. J. Endod., 1996, 22: 23-25.

[99]

McCormick JE, Weine FS, Maggio JD. Tissue pH of developing periapical lesions in dogs. J. Endod., 1983, 9: 47-51.

[100]

Cvek M, Lindvall AM. External root resorption following bleaching of pulpless teeth with oxygen peroxide. Endod. Dent. Traumatol., 1985, 1: 56-60.

[101]

Lim KC. Considerations in intracoronal bleaching. Aust. Endod. J., 2004, 30: 69-73.

[102]

Chng HK. Update on materials used in intracoronal bleaching. Ann. R. Australas. Coll. Dent. Surg., 2002, 16: 147-150.

[103]

Gölz L, . Hypoxia and P. gingivalis synergistically induce HIF-1 and NF-κB activation in PDL cells and periodontal diseases. Mediators Inflamm., 2015, 2015: 438085.

[104]

DeLaurier A, Boyde A, Jackson B, Horton MA, Price JS. Identifying early osteoclastic resorptive lesions in feline teeth: a model for understanding the origin of multiple idiopathic root resorption. J. Periodontal Res., 2009, 44: 248-257.

[105]

von Arx T, Schawalder P, Ackermann M, Bosshardt DD. Human and feline invasive cervical resorptions: the missing link?—presentation of four cases. J. Endod., 2009, 35: 904-913.

[106]

Patel K, Schirru E, Niazi S, Mitchell P, Mannocci F. Multiple apical radiolucencies and external cervical resorption associated with varicella zoster virus: a case report. J. Endod., 2016, 42: 978-983.

[107]

Kumar V, Chawla A, Kaur A. Multiple idiopathic cervical root resorptions in patients with hepatitis B virus infection. J. Endod., 2018, 44: 1575-1577.

[108]

Dobroś K, Myciński P, Borowy P, Zarzecka J. Multiple invasive cervical resorption and celiac disease: a case report. Quintessence Int., 2018, 49: 407-412.

[109]

Heithersay GS, Musu D, Cotti E. External tooth resorption associated with a peripheral odontogenic fibroma: review and case report. Aust. Dent. J., 2017, 62: 516-522.

[110]

Gabay E, Akrish S, Machtei EE. Oral focal mucinosis associated with cervical external root resorption: a case report. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2010, 110: e75-e78.

[111]

Mavridou AM, . Is hypoxia related to external cervical resorption? A case report. J. Endod., 2019, 45: 459-470.

[112]

Patel S, Saberi N. External cervical resorption associated with the use of bisphosphonates: a case series. J. Endod., 2015, 41: 742-748.

[113]

Coxon FP, Thompson K, Rogers MJ. Recent advances in understanding the mechanism of action of bisphosphonates. Curr. Opin. Pharm., 2006, 6: 307-312.

[114]

Hewitt RE, . The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin. Exp. Immunol., 2005, 139: 101-111.

[115]

Dicuonzo G, . Fever after zoledronic acid administration is due to increase in TNF-alpha and IL-6. J. Interferon Cytokine Res., 2003, 23: 649-654.

[116]

Russell RGG. Determinants of structure–function relationship among biphosphonates. Bone, 2007, 40: S21-S25.

[117]

Ben-Yehouda A. Progressive cervical root resorption related to tetracycline root conditioning. J. Periodontol., 1997, 68: 432-435.

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/