Filamentation initiated by Cas2 and its association with the acquisition process in cells

Lei Wang , Xin Yu , Mengjie Li , Guiqin Sun , Lin Zou , Tiansheng Li , Linlin Hou , Yameng Guo , Danfeng Shen , Di Qu , Xunjia Cheng , Li Chen

International Journal of Oral Science ›› 2019, Vol. 11 ›› Issue (3) : 29

PDF
International Journal of Oral Science ›› 2019, Vol. 11 ›› Issue (3) : 29 DOI: 10.1038/s41368-019-0063-0
Article

Filamentation initiated by Cas2 and its association with the acquisition process in cells

Author information +
History +
PDF

Abstract

Cas1-and-Cas2-mediated new spacer acquisition is an essential process for bacterial adaptive immunity. The process is critical for the ecology of the oral microflora and oral health. Although molecular mechanisms for spacer acquisition are known, it has never been established if this process is associated with the morphological changes of bacteria. In this study, we demonstrated a novel Cas2-induced filamentation phenotype in E. coli that was regulated by co-expression of the Cas1 protein. A 30 amino acid motif at the carboxyl terminus of Cas2 is necessary for this function. By imaging analysis, we provided evidence to argue that Cas-induced filamentation is a step coupled with new spacer acquisition during which filaments are characterised by polyploidy with asymmetric cell division. This work may open new opportunities to investigate the adaptive immune response and microbial balance for oral health.

Cite this article

Download citation ▾
Lei Wang, Xin Yu, Mengjie Li, Guiqin Sun, Lin Zou, Tiansheng Li, Linlin Hou, Yameng Guo, Danfeng Shen, Di Qu, Xunjia Cheng, Li Chen. Filamentation initiated by Cas2 and its association with the acquisition process in cells. International Journal of Oral Science, 2019, 11(3): 29 DOI:10.1038/s41368-019-0063-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012, 482: 331-338.

[2]

Koonin EV, Makarova KS. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes. RNA Biol., 2013, 10: 679-686.

[3]

Barrangou R, Marraffini LA. CRISPR-Cas Systems: prokaryotes upgrade to adaptive immunity. Mol. Cell, 2014, 54: 234-244.

[4]

van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat. Rev. Microbiol., 2014, 12: 479-492.

[5]

van der Ploeg JR. Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages. Microbiology, 2009, 155: 1966-1976.

[6]

Serbanescu MA, . Role of the Streptococcus mutans CRISPR-Cas systems in immunity and cell physiology. J. Bacteriol., 2015, 197: 749-761.

[7]

Burmistrz M, . Functional analysis of porphyromonas gingivalis W83 CRISPR-Cas systems. J. Bacteriol., 2015, 197: 2631-2641.

[8]

Burley KM, Sedgley CM. CRISPR-Cas, a prokaryotic adaptive immune system, in endodontic, oral, and multidrug-resistant hospital-acquired Enterococcus faecalis. J. Endod., 2012, 38: 1511-1515.

[9]

Tong Z, Du Y, Ling J, Huang L, Ma J. Relevance of the clustered regularly interspaced short palindromic repeats of Enterococcus faecalis strains isolated from retreatment root canals on periapical lesions, resistance to irrigants and biofilms. Exp. Ther. Med., 2017, 14: 5491-5496.

[10]

Pride DT, Salzman J, Relman DA. Comparisons of clustered regularly interspaced short palindromic repeats and viromes in human saliva reveal bacterial adaptations to salivary viruses. Environ. Microbiol., 2012, 14: 2564-2576.

[11]

Zhou H, . CRISPRs provide broad and robust protection to oral microbial flora of gingival health against bacteriophage challenge. Protein Cell, 2015, 6: 541-545.

[12]

Wang J, Gao Y, Zhao F. Phage-bacteria interaction network in human oral microbiome. Environ. Microbiol., 2016, 18: 2143-2158.

[13]

Barrangou R, . CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315: 1709-1712.

[14]

Yosef I, Goren MG, Qimron U. Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic acids Res., 2012, 40: 5569-5576.

[15]

Nunez JK, Lee AS, Engelman A, Doudna JA. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature, 2015, 519: 193-198.

[16]

Wang J, . Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell, 2015, 163: 840-853.

[17]

Dillard KE, . Assembly and translocation of a CRISPR-Cas primed acquisition complex. Cell, 2018, 175: 934-46 e915.

[18]

Jinek M, . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821.

[19]

Levy A, . CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature, 2015, 520: 505-510.

[20]

Palmer, K. L. & Gilmore, M. S. Multidrug-resistant enterococci lack CRISPR-cas. mBio 1, https://doi.org/10.1128/mBio.00227-10 (2010).

[21]

Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 2013, 497: 254-257.

[22]

Shipman SL, Nivala J, Macklis JD, Church GM. CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria. Nature, 2017, 547: 345-349.

[23]

Nunez JK, . Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol., 2014, 21: 528-534.

[24]

Shipman SL, Nivala J, Macklis JD, Church GM. Molecular recordings by directed CRISPR spacer acquisition. Science, 2016, 353: aaf1175.

[25]

Sun, G. et al. Complete Genome Sequence of Elizabethkingia meningoseptica, Isolated from a T-Cell Non-Hodgkin’s Lymphoma Patient. Genome Announc. 3, https://doi.org/10.1128/genomeA.00673-15 (2015).

[26]

Sun G, . Identification and characterization of a novel prokaryotic peptide: N-glycosidase from Elizabethkingia meningoseptica. J. Biol. Chem., 2015, 290: 7452-7462.

[27]

Li T, . Identification and characterization of a core fucosidase from the bacterium Elizabethkingia meningoseptica. J. Biol. Chem., 2018, 293: 1243-1258.

[28]

Bos J, . Emergence of antibiotic resistance from multinucleated bacterial filaments. Proc. Natl Acad. Sci. USA, 2015, 112: 178-183.

[29]

Pine L, Boone CJ. Comparative cell wall analyses of morphological forms within Genus Actinomyces. J. Bacteriol., 1967, 94: 875-&.

[30]

Radman M. SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci., 1975, 5A: 355-367.

[31]

Hirota Y, Ryter A, Jacob F. Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. Cold Spring Harb. Symp. Quant. Biol., 1968, 33: 677-693.

[32]

Miller C, . SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science, 2004, 305: 1629-1631.

[33]

Justice SS, . Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl Acad. Sci. USA, 2004, 101: 1333-1338.

[34]

Justice SS, Hunstad DA, Seed PC, Hultgren SJ. Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc. Natl Acad. Sci. USA, 2006, 103: 19884-19889.

[35]

Mysorekar IU, Hultgren SJ. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc. Natl Acad. Sci. USA, 2006, 103: 14170-14175.

[36]

Rossetti V, Ammann TW, Thurnheer T, Bagheri HC, Belibasakis GN. Phenotypic diversity of multicellular filamentation in oral Streptococci. PLoS ONE, 2013, 8

[37]

Kirby EP, Jacob F, Goldthwait DA. Prophage induction and filament formation in a mutant strain of Escherichia coli. Proc. Natl Acad. Sci. USA, 1967, 58: 1903-1910.

[38]

Ohno S, Wolf U, Atkin NB. Evolution from fish to mammals by gene duplication. Hered.-Genet. A, 1968, 59: 169-187.

[39]

Semon M, Wolfe KH. Consequences of genome duplication. Curr. Opin. Genet. Dev., 2007, 17: 505-512.

[40]

Hufton AL, Panopoulou G. Polyploidy and genome restructuring: a variety of outcomes. Curr. Opin. Genet. Dev., 2009, 19: 600-606.

[41]

Davoli T, de Lange T. The causes and consequences of polyploidy in normal development and cancer. Annu. Rev. Cell Dev. Biol., 2011, 27: 585-610.

[42]

Calderone RA, Fonzi WA. Virulence factors of Candida albicans. Trends Microbiol., 2001, 9: 327-335.

[43]

McConnachie EW. The morphology, formation and development of cysts of Entamoeba. Parasitology, 1969, 59: 41-53.

[44]

Zhang S, . Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene, 2014, 33: 116-128.

[45]

Niu N, . Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis, 2016, 5

[46]

Otto SP, Whitton J. Polyploid incidence and evolution. Annu. Rev. Genet., 2000, 34: 401-437.

[47]

Justice SS, Hunstad DA, Cegelski L, Hultgren SJ. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol., 2008, 6: 162-168.

[48]

Khalifa L, . Phage therapy against Enterococcus faecalis in dental root canals. J. Oral. Microbiol., 2016, 8: 32157.

[49]

Li YF, Zhang Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. Antimicrob. Agents Chemother., 2007, 51: 2092-2099.

[50]

Zhu H, . Development of a multiplex PCR assay for detection and genogrouping of Neisseria meningitidis. J. Clin. Microbiol., 2012, 50: 46-51.

[51]

Meijering E, . Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytom. Part A: J. Int. Soc. Anal. Cytol., 2004, 58: 167-176.

[52]

Tachibana H, Cheng XJ, Tsukamoto H, Itoh J. Characterization of Entamoeba histolytica intermediate subunit lectin-specific human monoclonal antibodies generated in transgenic mice expressing human immunoglobulin loci. Infect. Immun., 2009, 77: 549-556.

[53]

Deng Y, . Artemether exhibits amoebicidal activity against Acanthamoeba castellanii through inhibition of the serine biosynthesis pathway. Antimicrob. Agents Chemother., 2015, 59: 4680-4688.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/