Advancing antimicrobial strategies for managing oral biofilm infections

Yang Jiao , Franklin R. Tay , Li-na Niu , Ji-hua Chen

International Journal of Oral Science ›› 2019, Vol. 11 ›› Issue (3) : 28

PDF
International Journal of Oral Science ›› 2019, Vol. 11 ›› Issue (3) : 28 DOI: 10.1038/s41368-019-0062-1
Review Article

Advancing antimicrobial strategies for managing oral biofilm infections

Author information +
History +
PDF

Abstract

Effective control of oral biofilm infectious diseases represents a major global challenge. Microorganisms in biofilms exhibit increased drug tolerance compared with planktonic cells. The present review covers innovative antimicrobial strategies for controlling oral biofilm-related infections published predominantly over the past 5 years. Antimicrobial dental materials based on antimicrobial agent release, contact-killing and multi-functional strategies have been designed and synthesized for the prevention of initial bacterial attachment and subsequent biofilm formation on the tooth and material surface. Among the therapeutic approaches for managing biofilms in clinical practice, antimicrobial photodynamic therapy has emerged as an alternative to antimicrobial regimes and mechanical removal of biofilms, and cold atmospheric plasma shows significant advantages over conventional antimicrobial approaches. Nevertheless, more preclinical studies and appropriately designed and well-structured multi-center clinical trials are critically needed to obtain reliable comparative data. The acquired information will be helpful in identifying the most effective antibacterial solutions and the most optimal circumstances to utilize these strategies.

Cite this article

Download citation ▾
Yang Jiao, Franklin R. Tay, Li-na Niu, Ji-hua Chen. Advancing antimicrobial strategies for managing oral biofilm infections. International Journal of Oral Science, 2019, 11(3): 28 DOI:10.1038/s41368-019-0062-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Flemming HC, . Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol., 2016, 14: 563-575.

[2]

Flemming HC, Wuertz S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol., 2019, 4: 247-260.

[3]

Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol., 2018, 26: 229-242.

[4]

David D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug Discov., 2003, 2: 114-122.

[5]

Morgan-Sagastume F, Larsen P, Nielsen JL, Nielsen PH. Characterization of the loosely attached fraction of activated sludge bacteria. Water Res., 2008, 42: 843-854.

[6]

Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu. Rev. Microbiol., 2002, 56: 187-209.

[7]

Mira A, Simon-Soro A, Curtis MA. Role of microbial communities in the pathogenesis of periodontal diseases and caries. J. Clin. Periodontol., 2017, 44(Suppl. 18): S23-S38.

[8]

Lin NJ. Biofilm over teeth and restorations: what do we need to know?. Dent. Mater., 2017, 33: 667-680.

[9]

Allaker RP. The use of nanoparticles to control oral biofilm formation. J. Dent. Res., 2010, 89: 1175-1186.

[10]

Cloutier M, Mantovani D, Rosei F. Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol., 2015, 33: 637-652.

[11]

Colton MB, Ehrlich E. Bactericidal effect obtained by addition of antibiotics to dental cements and direct filling resins. J. Am. Dent. Assoc., 1953, 47: 524-531.

[12]

Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 2013, 34: 8533-8554.

[13]

Darouiche RO, . A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group. N. Engl. J. Med., 1999, 340: 1-8.

[14]

Padovani GC, . Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol., 2015, 33: 621-636.

[15]

Melo MA, Guedes SF, Xu HH, Rodrigues LK. Nanotechnology-based restorative materials for dental caries management. Trends Biotechnol., 2013, 31: 459-467.

[16]

Cheng L, . Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine, 2015, 10: 627-641.

[17]

Liu Y, . Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev., 2019, 48: 428-446.

[18]

Nicolas B, . Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol., 2009, 191: 7333-7342.

[19]

Taylor PW, Hamilton-Miller JM, Stapleton PD. Antimicrobial properties of green tea catechins. Food Sci. Technol. Bull., 2005, 2: 71-81.

[20]

Quah SY, Wu S, Lui JN, Sum CP, Tan KS. N-acetylcysteine inhibits growth and eradicates biofilm of Enterococcus faecalis. J. Endod., 2012, 38: 81-85.

[21]

Park K. Controlled drug delivery systems: past forward and future back. J. Control. Release, 2014, 190: 3-8.

[22]

Jiao Y, . Quaternary ammonium-based biomedical materials: state-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci., 2017, 71: 53-90.

[23]

Munozbonilla A, Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci., 2012, 37: 281-339.

[24]

Tezel U, Pavlostathis SG. Quaternary ammonium disinfectants: microbial adaptation, degradation and ecology. Curr. Opin. Biotechnol., 2015, 33: 296-304.

[25]

Krasimir V, Jessica C, Griesser HJ. Antibacterial surfaces for biomedical devices. Expert Rev. Med. Devices, 2009, 6: 553-567.

[26]

Stephen W, Hanne I. Modes of action of three disinfectant active substances: a review. Regul. Toxicol. Pharmacol., 2013, 67: 456-467.

[27]

Beyth N, Yudovin-Farber I, Perez-Davidi M, Domb AJ, Weiss EI. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc. Natl Acad. Sci. USA, 2010, 107: 22038-22043.

[28]

Beyth N, . Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials, 2008, 29: 4157-4163.

[29]

Imazato S, Russell RR, McCabe JF. Antibacterial activity of MDPB polymer incorporated in dental resin. J. Dent., 1994, 23: 1437-1443.

[30]

Imazato S, Torii M, Tsuchitani Y, McCabe JF, Russell RR. Incorporation of bacterial inhibitor into resin composite. J. Dent. Res., 1994, 73: 1437-1443.

[31]

Imazato S, . Bactericidal activity and cytotoxicity of antibacterial monomer MDPB. Biomaterials, 1999, 20: 899-903.

[32]

Xiao YH, . Antibacterial activity and bonding ability of an adhesive incorporating an antibacterial monomer DMAE-CB. J. Biomed. Mater. Res. Part B, 2009, 90: 813-817.

[33]

Li F, . Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J. Dent., 2009, 37: 289-296.

[34]

Imazato S, Ma S, Chen JH, Xu HH. Therapeutic polymers for dental adhesives: loading resins with bio-active components. Dent. Mater., 2014, 30: 97-104.

[35]

Makvandi P, Jamaledin R, Jabbari M, Nikfarjam N, Borzacchiello A. Antibacterial quaternary ammonium compounds in dental materials: a systematic review. Dent. Mater., 2018, 34: 851-867.

[36]

Cocco AR, Rosa WL, Silva AF, Lund RG, Piva E. A systematic review about antibacterial monomers used in dental adhesive systems: current status and further prospects. Dent. Mater., 2015, 31: 1345-1362.

[37]

Huang L, . Antibacterial effect of a resin incorporating a novel polymerizable quaternary ammonium salt MAE-DB against Streptococcus mutans. J. Biomed. Mater. Res. Part B, 2012, 100: 1353-1358.

[38]

Huang L, . Antibacterial activity and cytotoxicity of two novel cross-linking antibacterial monomers on oral pathogens. Arch. Oral Biol., 2011, 56: 367-373.

[39]

Cheng L, . Tetracalcium phosphate composite containing quaternary ammonium dimethacrylate with antibacterial properties. J. Biomed. Mater. Res. Part B, 2012, 100: 726-734.

[40]

Antonucci JM, . Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent. Mater., 2012, 28: 219-228.

[41]

Li F, Weir MD, Xu HH. Effects of quaternary ammonium chain length on antibacterial bonding agents. J. Dent. Res., 2013, 92: 932-938.

[42]

Liang J, . The anti-caries effects of dental adhesive resin influenced by the position of functional groups in quaternary ammonium monomers. Dent. Mater., 2017, 34: 400-411.

[43]

Zhou W, . Improved secondary caries resistance via augmented pressure displacement of antibacterial adhesive. Sci. Rep., 2016, 6

[44]

Zhou, W. et al. Caries-resistant bonding layer in dentin. Sci. Rep. 6, 32740 (2016).

[45]

Wu T, . Evaluation of novel anticaries adhesive in a secondary caries animal model. Caries Res., 2018, 52: 14-21.

[46]

Imazato S, Tay FR, Kaneshiro AV, Takahashi Y, Ebisu S. An in vivo evaluation of bonding ability of comprehensive antibacterial adhesive system incorporating MDPB. Dent. Mater., 2007, 23: 170-176.

[47]

Silva ON, . Exploring the pharmacological potential of promiscuous host-defense peptides: from natural screenings to biotechnological applications. Front. Microbiol., 2011, 2: 232.

[48]

Lima SMF, . Antimicrobial peptide-based treatment for endodontic infections—biotechnological innovation in endodontics. Biotechnol. Adv., 2015, 33: 203-213.

[49]

Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat. Rev. Microbiol., 2005, 3: 238-250.

[50]

Di Luca M, Maccari G, Nifosì R. Treatment of microbial biofilms in the post-antibiotic era: prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools. FEMS Immunol. Med. Microbiol., 2014, 70: 257-270.

[51]

P orto WF, Pires AS, Franco OL. Computational tools for exploring sequence databases as a resource for antimicrobial peptides. Biotechnol. Adv., 2017, 35: 337-349.

[52]

Fjell CD, Hiss JA, Hancock RE, Schneider G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug Discov., 2012, 11: 37-51.

[53]

Onaizi SA, Leong SS. Tethering antimicrobial peptides: current status and potential challenges. Biotechnol. Adv., 2011, 29: 67-74.

[54]

Kazemzadeh-Narbat M, . Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials, 2010, 31: 9519-9526.

[55]

Moussa DG, Fok A, Aparicio C. Hydrophobic and antimicrobial dentin: a peptide-based 2-tier protective system for dental resin composite restorations. Acta Biomater., 2019, 88: 251-265.

[56]

Tiller JC, Liao CJ, Lewis K, Klibanov AM. Designing surfaces that kill bacteria on contact. Proc. Natl Acad. Sci. USA, 2001, 98: 5981-5985.

[57]

Li, F., Weir, M. D., Fouad, A. F. & Xu, H. H. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model. Dent. Mater. 30, 182–191 (2014).

[58]

Jiao Y, . Methacryloxylethyl cetyl ammonium chloride induces DNA damage and apoptosis in human dental pulp cells via generation of oxidative stress. Int. J. Biol. Sci., 2016, 12: 580-593.

[59]

Behzadi S, . Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev., 2017, 46: 4218-4244.

[60]

Yu Q, Wu Z, Chen H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater., 2015, 16: 1-13.

[61]

Wei T, Yu Q, Chen H. Responsive and synergistic antibacterial coatings: fighting against bacteria in a smart and effective way. Adv. Healthc. Mater., 2019, 8

[62]

Damm C, Münstedt H, Rosch A. Long-term antimicrobial polyamide 6/silver-nanocomposites. J. Mater. Sci., 2007, 42: 6067-6073.

[63]

Espinosa-Cristóbal LF, . Adherence inhibition of Streptococcus mutans on dental enamel surface using silver nanoparticles. Mater. Sci. Eng. C, 2013, 33: 2197-2202.

[64]

Cheng L, . Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent. Mater., 2013, 29: 462-472.

[65]

Zhang K, . Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent. Mater., 2012, 28: 842-852.

[66]

Cheng L, . Anti-biofilm dentin primer with quaternary ammonium and silver nanoparticles. J. Dent. Res., 2012, 91: 598-604.

[67]

Peulen TO, Wilkinson KJ. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol., 2011, 45: 3367-3373.

[68]

Cheng L, . Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent. Mater., 2012, 28: 561-572.

[69]

Fan C, . Development of an antimicrobial resin—a pilot study. Dent. Mater., 2011, 27: 322-328.

[70]

Cheng L, . Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J. Biomed. Mater. Res. B, 2012, 100: 1378-1386.

[71]

Feng X, . Application of dental nanomaterials: potential toxicity to the central nervous system. Int. J. Nanomed., 2015, 10: 3547-3565.

[72]

Storm WL, . Dual action antimicrobial surfaces via combined nitric oxide and silver release. J. Biomed. Mater. Res. Part A, 2015, 103: 1974-1984.

[73]

Samani, S., Hossainalipour, S. M., Tamizifar, M. & Rezaie, H. R. In vitro antibacterial evaluation of sol-gel-derived Zn, Ag, and (Zn+Ag)-doped hydroxyapatite coatings against methicillin-resistant Staphylococcus aureus. J. Biomed. Mater. Res. A 101, 222–230 (2012).

[74]

Fayaz AM, . Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine, 2010, 6: 103-109.

[75]

Ma S, . Adhesive materials with bioprotective/biopromoting functions. Curr. Oral Health Rep., 2014, 1: 213-221.

[76]

Zhao J, Liu Y, Sun W, Yang X. First detection, characterization, and application of amorphous calcium phosphate in dentistry. J. Dent. Sci., 2012, 7: 316-323.

[77]

Cheng L, . Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine. Dent. Mater., 2012, 28: 573-583.

[78]

Cheng L, . Dental plaque microcosm biofilm behavior on calcium phosphate nanocomposite with quaternary ammonium. Dent. Mater., 2012, 28: 853-862.

[79]

Liu Y, . Antibacterial and remineralizing orthodontic adhesive containing quaternary ammonium resin monomer and amorphous calcium phosphate nanoparticles. J. Dent., 2018, 72: 53-63.

[80]

Li F, Wang P, Weir MD, Fouad AF, Xu HH. Evaluation of antibacterial and remineralizing nanocomposite and adhesive in rat tooth cavity model. Acta Biomater., 2014, 10: 2804-2813.

[81]

Raab O. Ueber die Wirkung Fluorescierenden Stoffe auf Infusorien. Z. Biol., 1904, 39: 524-546.

[82]

Al-Shammery Deema, Michelogiannakis Dimitrios, Ahmed Zain Uddin, Ahmed Hameeda Bashir, Rossouw P. Emile, Romanos Georgios E., Javed Fawad. Scope of antimicrobial photodynamic therapy in Orthodontics and related research: A review. Photodiagnosis and Photodynamic Therapy, 2019, 25: 456-459.

[83]

Hu X, Huang YY, Wang Y, Wang X, Hamblin MR. Antimicrobial photodynamic therapy to control clinically relevant biofilm infections. Front. Microbiol., 2018, 9: 1299.

[84]

Takasaki AA, . Application of antimicrobial photodynamic therapy in periodontal and peri-implant diseases. Periodontol. 2000, 2009, 51: 109-140.

[85]

Konopka K, Goslinski T. Photodynamic therapy in dentistry. J. Dent. Res., 2007, 86: 694-707.

[86]

Wilson M. Lethal photosensitisation of oral bacteria and its potential application in the photodynamic therapy of oral infections. Photochem. Photobiol. Sci., 2004, 3: 412-418.

[87]

Williams JA, Pearson GJ, Colles MJ, Wilson M. The effect of variable energy input from a novel light source on the photoactivated bactericidal action of toluidine blue O on Streptococcus mutans. Caries Res., 2003, 37: 190-193.

[88]

Zanin IC, Gonçalves RB, Junior AB, Hope CK, Pratten J. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J. Antimicrob. Chemother., 2005, 56: 324-330.

[89]

Burns T, Wilson M, Pearson GJ. Effect of dentine and collagen on the lethal photosensitization of Streptococcus mutans. Caries Res., 1995, 29: 192-197.

[90]

Williams JA, Pearson GJ, Colles MJ, Wilson M. The photo-activated antibacterial action of toluidine blue O in a collagen matrix and in carious dentine. Caries Res., 2004, 38: 530-536.

[91]

Chan Y, Lai CH. Bactericidal effects of different laser wavelengths on periodontopathic germs in photodynamic therapy. Lasers Med. Sci., 2003, 18: 51-55.

[92]

Wilson M, Sarkar S, Bulman JS. Effect of blood on lethal photosensitization of bacteria in subgingival plaque from patients with chronic periodontitis. Lasers Med. Sci., 1993, 8: 297-303.

[93]

Wood S, Metcalf D, Devine D, Robinson C. Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J. Antimicrob. Chemother., 2006, 57: 680-684.

[94]

Reynolds EC. Remineralization of enamel subsurface lesions by casein phosphopeptide-stabilized calcium phosphate solutions. J. Dent. Res., 1997, 76: 1587-1595.

[95]

Müller P, Guggenheim B, Schmidlin PR. Efficacy of gasiform ozone and photodynamic therapy on a multispecies oral biofilm in vitro. Eur. J. Oral Sci., 2007, 115: 77-80.

[96]

Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet, 2005, 366: 1809-1820.

[97]

Cobb Charles M.. Clinical significance of non-surgical periodontal therapy: an evidence-based perspective of scaling and root planing. Journal of Clinical Periodontology, 2002, 29(s2): 22-32.

[98]

Sherman PR, . The effectiveness of subgingival scaling and root planning. I. Clinical detection of residual calculus. J. Periodontol., 1990, 61: 3-8.

[99]

Roca I, . The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect., 2015, 6: 22-29.

[100]

Horev B, . PH-Activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. ACS Nano, 2015, 9: 2390-2404.

[101]

Dobson J, Wilson M. Sensitization of oral bacteria in biofilms to killing by light from a low-power laser. Arch. Oral Biol., 1992, 37: 883-887.

[102]

Kömerik N, . In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob. Agents Chemother., 2003, 47: 932-940.

[103]

Zhang J, . Photodynamic therapy versus systemic antibiotic for the treatment of periodontitis in a rat model. J. Periodontol., 2019, 90: 798-807.

[104]

de Oliveira RR, Schwartz-Filho HO, Novaes AB Jr, Taba M Jr.. Antimicrobial photodynamic therapy in the non-surgical treatment of aggressive periodontitis: a preliminary randomized controlled clinical study. J. Periodontol., 2007, 78: 965-973.

[105]

de Oliveira RR, . Antimicrobial photodynamic therapy in the non-surgical treatment of aggressive periodontitis: cytokine profile in gingival crevicular fluid, preliminary results. J. Periodontol., 2009, 80: 98-105.

[106]

Xue D, Zhao Y. Clinical effectiveness of adjunctive antimicrobial photodynamic therapy for residual pockets during supportive periodontal therapy: a systematic review and meta-analysis. Photodiagn. Photodyn. Ther., 2017, 17: 127-133.

[107]

Yilmaz S, . Effect of galium arsenide diode laser on human periodontal disease: a microbiological and clinical study. Lasers Surg. Med., 2002, 30: 60-66.

[108]

Fontana CR, . The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J. Periodontal Res., 2009, 44: 751-759.

[109]

Whiteley M, . Gene expression in Pseudomonas aeruginosa biofilms. Nature, 2001, 413: 860-864.

[110]

Fimple JL, . Photodynamic treatment of endodontic polymicrobial infection in vitro. J. Endod., 2008, 34: 728-734.

[111]

Garcez AS, Nuñez SC, Hamblin MR, Ribeiro MS. Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J. Endod., 2008, 34: 138-142.

[112]

Xu Y, . Endodontic antimicrobial photodynamic therapy: safety assessment in mammalian cell cultures. J. Endod., 2009, 35: 1567-1572.

[113]

George S, Kishen A. Photophysical, photochemical, and photobiological characterization of methylene blue formulations for light-activated root canal disinfection. J. Biomed. Opt., 2007, 12: 034029.

[114]

Bonsor SJ, Nichol R, Reid TM, Pearson GJ. An alternative regimen for root canal disinfection. Br. Dent. J., 2006, 201: 101-105.

[115]

Mizutani K, . Lasers in minimally invasive periodontal and peri-implant therapy. Periodontol. 2000, 2016, 71: 185-212.

[116]

Bliss JM, Bigelow CE, Foster TH, Haidaris CG. Susceptibility of Candida species to photodynamic effects of photofrin. Antimicrob. Agents Chemother., 2004, 48: 2000-2006.

[117]

Varela Kellesarian S, . Efficacy of antimicrobial photodynamic therapy in the disinfection of acrylic denture surfaces: a systematic review. Photodiagn. Photodyn. Ther., 2017, 17: 103-110.

[118]

Zhang K, . Developing a new generation of therapeutic dental polymers to inhibit oral biofilms and protect teeth. Materials, 2018, 11: pii: E1747.

[119]

Feng L, . NIR-driven graphitic-phase carbon nitride nanosheets for efficient bioimaging and photodynamic therapy. J. Mater. Chem. B, 2016, 4: 8000-8008.

[120]

Gilmore BF, . Cold plasmas for biofilm control: opportunities and challenges. Trends Biotechnol., 2018, 36: 627-638.

[121]

Isbary G, . Cold atmospheric plasma devices for medical issues. Expert Rev. Med. Devices, 2013, 10: 367-377.

[122]

Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF. Microbiological interactions with cold plasma. J. Appl. Microbiol., 2017, 123: 308-324.

[123]

Lademann O, . Skin disinfection by plasma–tissue interaction: comparison of the effectivity of tissue-tolerable plasma and a standard antiseptic. Skin Pharmacol. Physiol., 2011, 24: 284-288.

[124]

Isbary G, . Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br. J. Dermatol., 2012, 167: 404-410.

[125]

Weiss MA, . Virucide properties of cold atmospheric plasma for future clinical applications. J. Med. Virol., 2017, 89: 952-959.

[126]

Graves David B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D: Applied Physics, 2012, 45(26): 263001.

[127]

Gallagher MJ, . Rapid inactivation of airborne bacteria using atmospheric pressure dielectric barrier grating discharge. IEEE Trans. Plasma Sci., 2007, 35: 1501-1510.

[128]

Mendis DA, Rosenberg M, Azam F. A note on the possible electrostatic disruption of bacteria. IEEE Trans. Plasma Sci., 2000, 28: 1304-1306.

[129]

Liu Y, Liu Q, Yu QS, Wang Y. Nonthermal atmospheric plasmas in dental restoration. J. Dent. Res., 2016, 95: 496-505.

[130]

Chavez de Paz LE. Redefining the persistent infection in root canals: possible role of biofilm communities. J. Endod., 2007, 33: 652-662.

[131]

Matsuo T, . An immunohistological study of the localization of bacteria invading root pulpal walls of teeth with periapical lesions. J. Endod., 2003, 29: 194-200.

[132]

Siqueira JF, . Efficacy of instrumentation techniques and irrigation regimens in reducing the bacterial population within root canals. J. Endod., 2002, 28: 181-184.

[133]

Wang R, . The effect of an atmospheric pressure, dc nonthermal plasma microjet on tooth root canal, dentinal tubules infection and reinfection prevention. Plasma Med., 2011, 1: 143-155.

[134]

Dahlén G, Samuelsson W, Molander A, Reit C. Identification and antimicrobial susceptibility of enterococci isolated from the root canal. Oral Microbiol. Immunol., 2000, 15: 309-312.

[135]

Sathorn C, Parashos P, Messer H. Antibacterial efficacy of calcium hydroxide intracanal dressing: a systematic review and meta-analysis. Int. Endod. J., 2007, 40: 2-10.

[136]

Nakajo K, Nakazawa F, Iwaku M, Hoshino E. Alkali-resistant bacteria in root canal systems. Oral Microbiol. Immunol., 2004, 19: 390-394.

[137]

Jiang C, Schaudinn C, Jaramillo DE, Webster P, Costerton JW. In vitro antimicrobial effect of a cold plasma jet against Enterococcus faecalis biofilms. ISRN Dent., 2012, 2012: 295736.

[138]

Li Y, . Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal Enterococcus faecalis biofilm in vitro. J. Endod., 2015, 41: 1325-1330.

[139]

Pan J, . Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro. J. Endod., 2013, 39: 105-110.

[140]

Blumhagen A, . Plasma deactivation of oral bacteria seeded on hydroxyapatite disks as tooth enamel analogue. Am. J. Dent., 2014, 27: 84-90.

[141]

Sladek REJ, Stoffels E, Walraven R, Tielbeek PJA, Koolhoven RA. Plasma treatment of dental cavities: a feasibility study. IEEE Trans. Plasma Sci., 2004, 32: 1540-1543.

[142]

Rupf S, . Killing of adherent oral microbes by a non-thermal atmospheric plasma jet. J. Med. Microbiol., 2010, 59: 206-212.

[143]

Duarte S, . Air plasma effect on dental disinfection. Phys. Plasmas, 2011, 18: 073503.

[144]

Sladek RE, Filoche SK, Sissons CH, Stoffels E. Treatment of Streptococcus mutans biofilms with a nonthermal atmospheric plasma. Lett. Appl. Microbiol., 2007, 45: 318-323.

[145]

Liu D, . Bacterial-killing effect of atmospheric pressure non-equilibrium plasma jet and oral mucosa response. J. Huazhong Univ. Sci. Technol. Med. Sci., 2011, 31: 852-856.

[146]

Molnar I, Papp J, Simon A, Anghel SD. Deactivation of Streptococcus mutans biofilms on a tooth surface using He dielectric barrier discharge at atmospheric pressure. Plasma Sci. Technol., 2013, 15: 535-541.

[147]

Campoccia D, Montanaro L, Arciola CR. A review of the clinical implications of anti-infective biomaterials andinfection-resistant surfaces. Biomaterials, 2013, 34: 8018-8029.

[148]

Idlibi AN, . Destruction of oral biofilms formed in situ on machined titanium (Ti) surfaces by cold atmospheric plasma. Biofouling, 2013, 29: 369-379.

[149]

Rupf S, . Removing biofilms from microstructured titanium ex vivo: a novel approach using atmospheric plasma technology. PLoS ONE, 2011, 6

[150]

Duske K, . Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs. Biomaterials, 2015, 52: 327-334.

[151]

Matthes R, . Osteoblast growth, after cleaning of biofilm-covered titanium discs with air-polishing and cold plasma. J. Clin. Periodontol., 2017, 44: 672-680.

[152]

Pei Y, . Biological activities and potential oral applications of n-acetylcysteine: progress and prospects. Oxid. Med. Cell. Longev., 2018, 2018: 2835787.

[153]

Xu FJ, Neoh KG, Kang ET. Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog. Polym. Sci., 2009, 34: 719-761.

[154]

Wen T, Becker ML. “Click” reactions: a versatile toolbox for the synthesis of peptide-conjugates. Chem. Soc. Rev., 2014, 43: 7013-7039.

[155]

Soukos NS, Goodson JM. Photodynamic therapy in the control of oral biofilms. Periodontol. 2000, 2011, 55: 143-166.

[156]

Kuang X, Chen V, Xu X. Novel approaches to the control of oral microbial biofilms. Biomed. Res. Int., 2018, 2018: 6498932.

[157]

Jain A, . Antimicrobial. Polym. Adv. Healthc. Mater., 2014, 3: 1969-1985.

[158]

Paladini F, Pollini M, Sannino A, Ambrosio L. Metal-based antibacterial substrates for biomedical applications. Biomacromolecules, 2015, 16: 1873-1885.

[159]

Seabra AB, Justo GZ, Haddad PS. State of the art, challenges and perspectives in the design of nitric oxide-releasing polymeric nanomaterials for biomedical applications. Biotechnol. Adv., 2015, 33: 1370-1379.

[160]

Michl TD, . Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects. Chem. Commun., 2015, 51: 7058-7060.

[161]

Weber, D. J. & Rutala, W. A. Self-disinfecting surfaces: review of current methodologies and future prospects. Am. J. Infect. Control. 41, S31–S35 (2013).

[162]

Yueh MF, Tukey RH. Triclosan: a widespread environmental toxicant with many biological effects. Annu. Rev. Pharmacol. Toxicol., 2016, 56: 251-272.

[163]

Koo H, . Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J. Antimicrob. Chemother., 2003, 52: 782-789.

[164]

Feghali K, Feldman M, La VD, Santos J, Grenier D. Cranberry proanthocyanidins: natural weapons against periodontal diseases. J. Agric. Food Chem., 2012, 60: 5728-5735.

[165]

Nie B, Ao H, Zhou J, Tang T, Yue B. Biofunctionalization of titanium with bacitracin immobilization shows potential for anti-bacteria, osteogenesis and reduction of macrophage inflammation. Colloids Surf. B, 2016, 145: 728-739.

[166]

Chen X, Hirt H, Li Y, Gorr SU, Aparicio C. Antimicrobial GL13K peptide coatings killed and ruptured the wall of Streptococcus gordonii and prevented formation and growth of biofilms. PLoS ONE, 2014, 9

[167]

Dezoysa GH, Sarojini V. A feasibility study exploring the potential of novel battacin lipopeptides as antimicrobial coatings. ACS Appl. Mater. Interfaces, 2016, 9: 1373-1383.

[168]

Godoy-Gallardo M, . Antibacterial properties of hLf1-11 peptide onto titanium surfaces: a comparison study between silanization and surface initiated polymerization. Biomacromolecules, 2015, 16: 483-496.

[169]

Chen R, Willcox MD, Ho KK, Smyth D, Kumar N. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials, 2016, 85: 142-151.

[170]

Tan XW, . Effectiveness of antimicrobial peptide immobilization for preventing perioperative cornea implant-associated bacterial infection. Antimicrob. Agents Chemother., 2014, 58: 5229-5238.

[171]

Gao G, . The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials, 2011, 32: 3899-3909.

[172]

Gao G, . Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Biomacromolecules, 2011, 12: 3715-3727.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/