Dental-craniofacial manifestation and treatment of rare diseases

En Luo , Hanghang Liu , Qiucheng Zhao , Bing Shi , Qianming Chen

International Journal of Oral Science ›› 2019, Vol. 11 ›› Issue (1) : 9

PDF
International Journal of Oral Science ›› 2019, Vol. 11 ›› Issue (1) : 9 DOI: 10.1038/s41368-018-0041-y
Review Article

Dental-craniofacial manifestation and treatment of rare diseases

Author information +
History +
PDF

Abstract

Rare diseases are typically genetic, chronic, incurable disorders with a relatively low incidence, and a number of dental and craniofacial manifestations are associated with such diseases. A team headed by En Luo and Hanghang Liu at Sichuan University in China conducted a large-scale review of the manifestations and treatment of rare diseases related to dental and craniofacial disorders. The authors found that in their early stages, several rare diseases exhibit distinctive dental and craniofacial characteristics. Provided they understand the clinical features, dentists and oral surgeons are the individuals best placed to make an early identification of such diseases. The authors believe that their findings will help clinicians fully grasp the related clinical signs and potential treatments of rare diseases, thereby facilitating early diagnosis and patient management as well as improving prognosis.

Cite this article

Download citation ▾
En Luo, Hanghang Liu, Qiucheng Zhao, Bing Shi, Qianming Chen. Dental-craniofacial manifestation and treatment of rare diseases. International Journal of Oral Science, 2019, 11(1): 9 DOI:10.1038/s41368-018-0041-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dawkins HJS, . Progress in rare diseases research 2010-2016: an IRDiRC perspective. Clin. Transl. Sci., 2018, 11: 11-20.

[2]

Aymé S, Schmidtke J. Networking for rare diseases: a necessity for Europe. Bundesgesundheitsblatt. Gesundh. Gesundh., 2007, 50: 1477-1483.

[3]

Azie N, Vincent J. Rare diseases: the bane of modern society and the quest for cures. Clin. Pharmacol. Ther., 2012, 92: 135-139.

[4]

Schieppati A, Henter JI, Daina E, Aperia A. Why rare diseases are an important medical and social issue. Lancet, 2008, 371: 2039-2041.

[5]

Melnikova I. Rare diseases and orphan drugs. Nat. Rev. Drug. Discov., 2012, 11: 267-268.

[6]

Ekins S. Industrializing rare disease therapy discovery and development. Nat. Biotechnol., 2017, 35: 117-118.

[7]

James, W. D., Elston, D. M. & Berger, T. G. Andrews' Diseases of Skin: Clinical Dermatology, 12e. (Philadelphia: Elsevier, 2016).

[8]

Pinheiro M, Freire-Maia N. Ectodermal dysplasias: a clinical classification and a causal review. Am. J. Med. Genet. A., 1994, 53: 153-162.

[9]

Halai T, Stevens C. Ectodermal dysplasia: a clinical overview for the dental practitioner. Dent. Update, 2015, 42: 779-790.

[10]

Lexner MO, Bardow A, Hertz JM, Nielsen LA, Kreiborg S. Anomalies of tooth formation in hypohidrotic ectodermal dysplasia. Int. J. Paediatr. Dent., 2007, 17: 10-18.

[11]

Leao JC, Ferreira AMC, Bandeira V, Figueirôa FV, Porter SR. Anhydrotic ectodermal dysplasia (Christ-Siemens-Touraine syndrome). A case report. Int. Dent. J., 2005, 55: 89-92.

[12]

Crawford PJ, Aldred MJ, Clarke A. Clinical and radiographic dental findings in X linked hypohidrotic ectodermal dysplasia. J. Med. Genet., 1991, 28: 181-185.

[13]

Tso MS, Crawford PJ, Miller J. Hypodontia, ectodermal dysplasia and sweat pore count. Br. Dent. J., 1985, 158: 56-60.

[14]

Nakata M, Koshiba H, Eto K, Nance WE. A genetic study of anodontia in X-linked hypohidrotic ectodermal dysplasia. Am. J. Hum. Genet., 1980, 32: 908-919.

[15]

Borzabadi-Farahani A. Orthodontic considerations in restorative management of hypodontia patients with endosseous implants. J. Oral. Implantol., 2012, 38: 779-791.

[16]

Rad AS, Siadat H, Monzavi A, Mangoli AA. Full mouth rehabilitation of a hypohidrotic ectodermal dysplasia patient with dental implants: a clinical report. J. Prosthodont., 2007, 16: 209-213.

[17]

Bergendal B. Oligodontia ectodermal dysplasia—on signs, symptoms, genetics, and outcomes of dental treatment. Swed. Dent. J. Suppl., 2010, 205: 13-78.

[18]

Lind LK, Stecksén-Blicks C, Lejon K, Schmitt-Egenolf M. EDAR mutation in autosomal dominant hypohidrotic ectodermal dysplasia in two Swedish families. Bmc. Med. Genet., 2006, 7

[19]

Singh P, Warnakulasuriya S. Aplasia of submandibular salivary glands associated with ectodermal dysplasia. J. Oral. Pathol. Med., 2004, 33: 634-636.

[20]

Nordgarden H, Storhaug K, Lyngstadaas SP, Jensen JL. Salivary gland function in persons with ectodermal dysplasias. Eur. J. Oral. Sci., 2003, 111: 371-376.

[21]

Pober BR. Williams–Beuren syndrome. N. Engl. J. Med., 2010, 362: 239-252.

[22]

Stasia MJ, . Functional and genetic characterization of two extremely rare cases of Williams–Beuren Syndrome associated with chronic granulomatous disease. Eur. J. Hum. Genet., 2013, 21: 1079-1084.

[23]

Zhukova N, Naqvi A. Williams-Beuren syndrome and burkitt leukemia. J. Pediatr. Hematol. Oncol., 2013, 35: e30-e32.

[24]

Vandeweyer G, Van der Aa N, Reyniers E, Kooy RF. The contribution of CLIP2 haploinsufficiency to the clinical manifestations of the Williams-Beuren syndrome. Am. J. Hum. Genet., 2012, 90: 1071-1078.

[25]

Crespi BJ, Hurd PL. Cognitive-behavioral phenotypes of Williams syndrome are associated with genetic variation in the GTF2I gene, in a healthy population. Bmc. Neurosci., 2014, 15: 1-6.

[26]

Martens MA, Wilson SJ, Reutens DC. Research review: Williams syndrome: a critical review of the cognitive, behavioral, and neuroanatomical phenotype. J. Child Psychol. Psychiatr., 2008, 49: 576-608.

[27]

Kapp ME, von Noorden GK, Jenkins R. Strabismus in Williams syndrome. Am. J. Ophthalmol., 1995, 119: 355-360.

[28]

Olsen RK, . Retinotopically defined primary visual cortex in Williams syndrome. Brain, 2009, 132: 635-644.

[29]

Van der Geest JN, . Visual depth processing in Williams–Beuren syndrome. Exp. Brain Res., 2005, 166: 200-209.

[30]

Morris CA. Introduction: Williams syndrome. Am. J. Med. Genet. C. Semin. Med. Genet., 2010, 154C: 203-208.

[31]

Kruszka P, . Williams-Beuren syndrome in diverse populations. Am. J. Med. Genet. A., 2018, 176: 1128-1136.

[32]

Torres CP, . Oral findings and dental treatment in a child with Williams-Beuren syndrome. Braz. Dent. J., 2015, 26: 312-316.

[33]

Meyer-Lindenberg A, Mervis CB, Berman KF. Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat. Rev. Neurosci., 2006, 7: 380-393.

[34]

Carrasco X, Castillo S, Aravena T, Rothhammer P, Aboitiz F. Williams syndrome: pediatric, neurologic, and cognitive development. Pediatr. Neurol., 2005, 32: 166-172.

[35]

Haas BW, . Genetic influences on sociability: heightened amygdala reactivity and event-related responses to positive social stimuli in Williams syndrome. J. Neurosci., 2009, 29: 1132-1139.

[36]

Dykens E. Anxiety, fears, and phobias in persons with Williams syndrome. Dev. Neuropsychol., 2003, 23: 291-316.

[37]

Fahim C, . Williams syndrome: a relationship between genetics, brain morphology and behaviour. J. Intellect. Disabil. Res., 2012, 56: 879-894.

[38]

Martens MA, Reutens DC, Wilson SJ. Auditory cortical volumes and musical ability in Williams syndrome. Neuropsychologia, 2010, 48: 2602-2609.

[39]

Wengenroth M, Blatow M, Bendszus M, Schneider P. Leftward lateralization of auditory cortex underlies holistic sound perception in Williams syndrome. PLoS One, 2010, 5: e12326.

[40]

Järvinen A, Korenberg JR, Bellugi U. The social phenotype of Williams syndrome. Curr. Opin. Neurobiol., 2013, 23: 414-422.

[41]

Knowler WC, Pettitt DJ, Saad MF, Bennett PH. Diabetes mellitus in the pima indians: incidence, risk factors and pathogenesis. Diabetes Metab. Rev., 1990, 6: 1-27.

[42]

Partsch CJ, . Longitudinal evaluation of growth, puberty, and bone maturation in children with Williams syndrome. J. Pediatr., 1999, 134: 82-89.

[43]

Palacios-Verdú MG, . Metabolic abnormalities in Williams–Beuren syndrome. J. Med. Genet., 2015, 52: 248-255.

[44]

Cherniske EM, . Multisystem study of 20 older adults with Williams syndrome. Am. J. Med. Genet. A., 2004, 131A: 255-264.

[45]

Geggel RL, Gauvreau K, Lock JE. Balloon dilation angioplasty of peripheral pulmonary stenosis associated with williams syndrome. Circulation, 2001, 103: 2165-2170.

[46]

Helfrich AM, Philla KQ. Late-onset hypercalcemia in Williams-Beuren syndrome: importance of early and frequent screening and intervention. J. Pediatr. Endocrinol. Metab., 2015, 28: 425-428.

[47]

Dykens EM, Rosner BA, Ly T, Sagun J. Music and anxiety in Williams syndrome: a harmonious or discordant relationship?. Am. J. Ment. Retard., 2005, 110: 346-358.

[48]

Fritsch C, Bolsen K, Ruzicka T, Goerz G. Congenital erythropoietic porphyria. Skin. Pharmacol. Phys., 1984, 32: 299-300.

[49]

Lee WH, Tai WC, Wu PY. Congenital erythropoietic porphyria. Dermatol. Sin., 2012, 30: 62-65.

[50]

Di Pierro E, Brancaleoni V, Granata F. Advances in understanding the pathogenesis of congenital erythropoietic porphyria. Br. J. Haematol., 2016, 173: 365-379.

[51]

Poh-Fitzpatrick MB. Clinical features of the porphyrias. Clin. Dermatol., 1998, 16: 251-264.

[52]

Berry AA, . Two brothers with mild congenital erythropoietic porphyria due to a novel genotype. Arch. Dermatol., 2005, 141: 1575-1579.

[53]

Pandey M, . Report of a novel Indian case of congenital erythropoietic porphyria and overview of therapeutic options. J. Pediatr. Hematol. Oncol., 2013, 35: e167-e170.

[54]

Poh-Fitzpatrick MB. The erythropoietic porphyrias. Dermatol. Clin., 1986, 4: 291-296.

[55]

Braun-Falco, O., Plewig, G., Wolff, H. H. & Burgdorf, W. H. C. The Porphyrias (Springer, Berlin, Heidelberg, 2000).

[56]

Hallai N, . Pregnancy in a patient with congenital erythropoietic porphyria. N. Engl. J. Med., 2007, 357: 622-623.

[57]

Takamura N. Need for measurement of porphyrins in teardrops in patients with congenital erythropoietic porphyria. Br. J. Ophthalmol., 2002, 86: 1188-1188.

[58]

Katugampola RP, . Congenital erythropoietic porphyria: a single-observer clinical study of 29 cases. Br. J. Dermatol., 2012, 167: 901-913.

[59]

Fityan A, Fassihi H, Sarkany R. Congenital erythropoietic porphyria: mild presentation with late onset associated with a mutation in the UROS gene promoter sequence. Clin. Exp. Dermatol., 2016, 41: 953-954.

[60]

Darwich E, . Congenital erythropoietic porphyria and Parkinson's disease: clinical association in a patient with a long-term follow-up. Eur. J. Dermatol., 2011, 21: 613-614.

[61]

Sidorsky TI, Christine CW, Epstein JH, Berger TG. Development of corticobasal syndrome in a patient with congenital erythropoietic porphyria. Park. Relat. Disord., 2014, 20: 349-350.

[62]

Harada FA, Shwayder TA, Desnick RJ, Lim HW. Treatment of severe congenital erythropoietic porphyria by bone marrow transplantation. J. Am. Acad. Dermatol., 2001, 45: 279-282.

[63]

Piomelli S, Poh-Fitzpatrick MB, Seaman C, Skolnick LM, Berdon WE. Complete suppression of the symptoms of congenital erythropoietic porphyria by long-term treatment with high-level transfusions. N. Engl. J. Med., 1986, 314: 1029-1031.

[64]

Peinado CM, . Successful treatment of congenital erythropoietic porphyria using matched unrelated hematopoietic stem cell transplantation. Pediatr. Dermatol., 2013, 30: 484-489.

[65]

Murphy A, Gibson G, Elder GH, Otridge BA, Murphy GM. Adult-onset congenital erythropoietic porphyria (Gunther's disease) presenting with thrombocytopenia. J. R. Soc. Med., 1995, 88: 357p-358p.

[66]

Katugampola RP, . A management algorithm for congenital erythropoietic porphyria derived from a study of 29 cases. Br. J. Dermatol., 2012, 167: 888-900.

[67]

Roughley PJ, Rauch F, Glorieux FH. Osteogenesis imperfecta - clinical and molecular diversity. Eur. Cell. Mater., 2003, 5: 41-47.

[68]

Marini, J. C. et al. Osteogenesis imperfecta. Nat. Rev. Dis. Prim. 3, 17052 (2017).

[69]

Forlino A, Marini JC. Osteogenesis imperfecta. Lancet, 2016, 387: 1657-1671.

[70]

Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet, 2004, 363: 1377-1385.

[71]

Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J. Med. Genet., 1979, 16: 101-116.

[72]

Brizola E, Staub ALP, Félix TM. Muscle strength, joint range of motion, and gait in children and adolescents with osteogenesis imperfecta. Pediatr. Phys. Ther., 2014, 26: 245-252.

[73]

Singer RB, Ogston SA, Paterson CR. Mortality in various types of osteogenesis imperfecta. J. Insur. Med., 2001, 33: 216-220.

[74]

Swinnen FKR, . Osteogenesis imperfecta: the audiological phenotype lacks correlation with the genotype. Orphanet J. Rare Dis., 2011, 6

[75]

Land C, Rauch F, Montpetit K, Ruck-Gibis J, Glorieux FH. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta. J. Pediatr., 2006, 148: 456-460.

[76]

Esposito P, Plotkin H. Surgical treatment of osteogenesis imperfecta: current concepts. Curr. Opin. Pediatr., 2008, 20: 52-57.

[77]

Krishnan H, . Primary and revision total hip arthroplasty in osteogenesis imperfecta. Hip Int., 2013, 23: 303-309.

[78]

Topouchian V, Finidori G, Glorion C, Padovani JP, Pouliquen JC. Posterior spinal fusion for kypho-scoliosis associated with osteogenesis imperfecta: long-term results. Rev. Chir. Orthop. Reparatrice. Appar. Mot., 2004, 90: 525-532.

[79]

Janus GJM, Finidori G, Engelbert RHH, Pouliquen M, Pruijs JEH. Operative treatment of severe scoliosis in osteogenesis imperfecta: results of 20 patients after halo traction and posterior spondylodesis with instrumentation. Eur. Spine J., 2000, 9: 486-491.

[80]

McAllion SJ, Paterson CR. Causes of death in osteogenesis imperfecta. J. Clin. Pathol., 1996, 49: 627-630.

[81]

Falvo KA, Klain DB, Krauss AN, Root L, Auld PA. Pulmonary function studies in osteogenesis imperfecta. Am. Rev. Respir. Dis., 1973, 108: 1258-1260.

[82]

Carpenter TO, Imel EA, Holm IA, de Beur SMJ, Insogna KL. A clinician's guide to X-linked hypophosphatemia. J. Bone Miner. Res., 2011, 26: 1381-1388.

[83]

Lee JY, Imel EA. The changing face of hypophosphatemic disorders in the FGF-23 era. Pediatr. Endocrinol. Rev., 2013, 10: 367-379.

[84]

Pavone V, . Hypophosphatemic rickets: etiology, clinical features and treatment. Eur. J. Orthop. Surg. Traumatol., 2015, 25: 221-226.

[85]

Kinoshita Y, Fukumoto S. X-linked hypophosphatemia and FGF23-related hypophosphatemic diseases: prospect for new treatment. Endocr. Rev., 2018, 39: 274-291.

[86]

Vakharia JD, Matlock K, Taylor HO, Backeljauw PF, Topor LS. Craniosynostosis as the presenting feature of X-linked hypophosphatemic rickets. Pediatrics, 2018, 141: S515-S519.

[87]

Connor J, . Conventional therapy in adults with X-linked hypophosphatemia: effects on enthesopathy and dental disease. J. Clin. Endocrinol. Metab., 2015, 100: 3625-3632.

[88]

Velan GJ, Currier BL, Clarke BL, Yaszemski MJ. Ossification of the posterior longitudinal ligament in vitamin D-resistant rickets. Spine, 2001, 26: 590-593.

[89]

Vega RA, . Hypophosphatemic rickets and craniosynostosis: a multicenter case series. J. Neurosurg. Pediatr., 2016, 17: 694-700.

[90]

Souza MA, Junior LAVS, Santos MAD, Vaisbich MH. Dental abnormalities and oral health in patients with Hypophosphatemic rickets. Clinics, 2010, 65: 1023-1026.

[91]

Souza AP, . Dental manifestations of patient with Vitamin D-resistant rickets. J. Appl. Oral. Sci., 2013, 21: 601-606.

[92]

Murayama T, Iwatsubo R, Akiyama S, Amano A, Morisaki I. Familial hypophosphatemic vitamin D-resistant rickets: dental findings and histologic study of teeth. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2000, 90: 310-316.

[93]

Rabbani A, Rahmani P, Ziaee V, Ghodoosi S. Dental problems in hypophosphatemic rickets, a cross sectional study. Iran. J. Pediatr., 2012, 22: 531-534.

[94]

Soares ECS, Costa FWG, Ribeiro TR, Alves APNN, Fonteles CSR. Clinical approach in familial hypophosphatemic rickets: report of three generations. Spec. Care. Dent., 2012, 33: 304-307.

[95]

Sabandal MMI, Robotta P, Bürklein S, Schäfer E. Review of the dental implications of X-linked hypophosphataemic rickets (XLHR). Clin. Oral. Investig., 2015, 19: 759-768.

[96]

Andersen MG, . Periapical and endodontic status of permanent teeth in patients with hypophosphatemic rickets. J. Oral. Rehabil., 2012, 39: 144-150.

[97]

Vital SO, . Tooth dentin defects reflect genetic disorders affecting bone mineralization. Bone, 2012, 50: 989-997.

[98]

Chaussain-Miller C, . Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: prevention by early treatment with 1-hydroxyvitamin D. J. Pediatr., 2003, 142: 324-331.

[99]

Batra P, Tejani Z, Mars M. X-linked hypophosphatemia: dental and histologic findings. J. Can. Dent. Assoc., 2006, 72: 69-72.

[100]

Douyere D, Joseph C, Gaucher C, Chaussain C, Courson F. Familial hypophosphatemic vitamin D–resistant rickets—prevention of spontaneous dental abscesses on primary teeth: a case report. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2009, 107: 525-530.

[101]

Rathore R, Nalawade TM, Pateel D, Mallikarjuna R. Oral manifestations of vitamin D resistant rickets in orthopantomogram. Case Rep., 2013, 2013: bcr2012008318.

[102]

Capelli S, . Clinical and molecular heterogeneity in a large series of patients with hypophosphatemic rickets. Bone, 2015, 79: 143-149.

[103]

Che H, . Impaired quality of life in adults with X-linked hypophosphatemia and skeletal symptoms. Eur. J. Endocrinol., 2016, 174: 325-333.

[104]

Sharkey MS, Grunseich K, Carpenter TO. Contemporary medical and surgical management of X-linked hypophosphatemic rickets. J. Am. Acad. Orthop. Surg., 2015, 23: 433-442.

[105]

Mäkitie O, . Metabolic control and growth during exclusive growth hormone treatment in X-linked hypophosphatemic rickets. Horm. Res. Paediatr., 2008, 69: 212-220.

[106]

Larson AN, . Hip and knee arthroplasty in hypophosphatemic rickets. J. Arthroplast., 2010, 25: 1099-1103.

[107]

Carpenter TO, . Burosumab therapy in children with X-linked hypophosphatemia. N. Engl. J. Med., 2018, 378: 1987-1998.

[108]

Carpenter TO, . Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J. Clin. Invest., 2014, 124: 1587-1597.

[109]

Imel EA, . Prolonged correction of serum phosphorus in adults with X-linked hypophosphatemia using monthly doses of KRN23. J. Clin. Endocrinol. Metab., 2015, 100: 2565-2573.

[110]

Linglart A, Biosse-Duplan M. Hypophosphatasia. Curr. Osteoporos. Rep., 2016, 14: 95-105.

[111]

Lia-Baldini A, . A molecular approach to dominance in hypophosphatasia. Hum. Genet., 2001, 109: 99-108.

[112]

Millán JL. The role of phosphatases in the initiation of skeletal mineralization. Calcif. Tissue Int., 2013, 93: 299-306.

[113]

Millan JL, Plotkin H. Hypophosphatasia - pathophysiology and treatment. Actual. Osteol., 2012, 8: 164-182.

[114]

Silva I, Castelao W, Mateus M, Branco JC. Childhood hypophosphatasia with myopathy: clinical report with recent update. Acta Reumatol. Port., 2012, 37: 92-96.

[115]

Fraser. D. Hypophosphatasia. Am. J. Med., 1957, 22: 730-746.

[116]

Whyte MP, . Hypophosphatasia: validation and expansion of the clinical nosology for children from 25years experience with 173 pediatric patients. Bone, 2015, 75: 229-239.

[117]

Whyte MP. Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol., 2016, 12: 233-246.

[118]

Shohat M, Rimoin DL, Gruber HE, Lachman RS. Perinatal lethal hypophosphatasia; clinical, radiologic and morphologic findings. Pediatr. Radiol., 1991, 21: 421-427.

[119]

Silver MM, Vilos GA, Milne KJ. Pulmonary hypoplasia in neonatal hypophosphatasia. Pediatr. Pathol., 1988, 8: 483-493.

[120]

Whyte MP, . Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J. Clin. Endocrinol. Metab., 2016, 101: 334-342.

[121]

Bianchi ML. Hypophosphatasia: an overview of the disease and its treatment. Osteoporos. Int., 2015, 26: 2743-2757.

[122]

Whyte MP. Hypophosphatasia: an overview for 2017. Bone, 2017, 102: 15-25.

[123]

Hofmann C, . Clinical aspects of hypophosphatasia: an update. Clin. Rev. Bone Miner. Metab., 2013, 11: 60-70.

[124]

Mornet E. Hypophosphatasia. Best. Pract. Res. Clin. Rheumatol., 2008, 22: 113-127.

[125]

Taketani T, . Clinical and genetic aspects of hypophosphatasia in Japanese patients. Arch. Dis. Child., 2014, 99: 211-215.

[126]

Whyte MP. Physiological role of alkaline phosphatase explored in hypophosphatasia. Ann. N. Y. Acad. Sci., 2010, 1192: 190-200.

[127]

Arun R, Khazim R, Webb JK, Burn J. Scoliosis in association with infantile hypophosphatasia: a case study in two siblings. Spine, 2005, 30: E471-E476.

[128]

Sutton RAL, Mumm S, Coburn SP, Ericson KL, Whyte MP. “Atypical femoral fractures” during bisphosphonate exposure in adult hypophosphatasia. J. Bone Miner. Res., 2012, 27: 987-994.

[129]

Khandwala H, Mumm S, Whyte M. Low serum alkaline phosphatase activity and pathologic fracture: case report and brief review of hypophosphatasia diagnosed in adulthood. Endocr. Pract., 2006, 12: 676-681.

[130]

Coe JD, Murphy WA, Whyte MP. Management of femoral fractures and pseudofractures in adult hypophosphatasia. J. Bone Jt. Surg., 1986, 68: 981-990.

[131]

Guañabens N, . Calcific periarthritis as the only clinical manifestation of hypophosphatasia in middle-aged sisters. J. Bone Miner. Res., 2014, 29: 929-934.

[132]

Beck C, Morbach H, Richl P, Stenzel M, Girschick HJ. How can calcium pyrophosphate crystals induce inflammation in hypophosphatasia or chronic inflammatory joint diseases?. Rheumatol. Int., 2009, 29: 229-238.

[133]

Rodriguez E, . Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy. Pediatr. Pulmonol., 2012, 47: 917-922.

[134]

de Roo MGA, . Infantile hypophosphatasia without bone deformities presenting with severe pyridoxine-resistant seizures. Mol. Genet. Metab., 2014, 111: 404-407.

[135]

Baumgartner-Sigl S, . Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c.677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone, 2007, 40: 1655-1661.

[136]

Brumback RJ, . Intramedullary nailing of femoral shaft fractures. Part II: fracture-healing with static interlocking fixation. J. Bone Jt. Surg. Am., 1988, 70: 1453-1462.

[137]

Whyte MP, . Chronic recurrent multifocal osteomyelitis mimicked in childhood hypophosphatasia. J. Bone Miner. Res., 2009, 24: 1493-1505.

[138]

Deeb AA, Bruce SN, Morris AAM, Cheetham TD. Infantile hypophosphatasia: disappointing results of treatment. Acta Paediatr., 2000, 89: 730-743.

[139]

Taketani T, . Ex vivo expanded allogeneic mesenchymal stem cells with bone marrow transplantation improved osteogenesis in infants with severe hypophosphatasia. Cell Transplant., 2015, 24: 1931-1943.

[140]

Whyte MP, . Enzyme-replacement therapy in life-threatening hypophosphatasia. N. Engl. J. Med., 2012, 366: 904-913.

[141]

McKusick VA. The defect in Marfan syndrome. Nature, 1991, 352: 279-280.

[142]

Matt P, . Recent advances in understanding Marfan syndrome: should we now treat surgical patients with losartan?. J. Thorac. Cardiovasc. Surg., 2008, 135: 389-394.

[143]

Ng CM, . TGF-β–dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J. Clin. Invest., 2004, 114: 1586-1592.

[144]

Pyeritz RE. The marfan syndrome. Annu. Rev. Med., 2000, 51: 481-510.

[145]

Loeys BL, . The revised Ghent nosology for the Marfan syndrome. J. Med. Genet., 2010, 47: 476-485.

[146]

Lundby R, . CT of the hips in the investigation of protrusio acetabuli in Marfan syndrome. A case control study. Eur. Radiol., 2011, 21: 1485-1491.

[147]

Lopes KRM, . Prenatal Marfan syndrome: report of one case and review of the literature. Prenat. Diagn., 2006, 26: 696-699.

[148]

Nollen GJ, . Pulmonary artery root dilatation in Marfan syndrome: quantitative assessment of an unknown criterion. Heart, 2002, 87: 470-471.

[149]

Waldmuller S, . Genetic testing in patients with aortic aneurysms/dissections: a novel genotype/phenotype correlation?. Eur. J. Cardiothorac. Surg., 2007, 31: 970-975.

[150]

van Karnebeek CDM. Natural history of cardiovascular manifestations in Marfan syndrome. Arch. Dis. Child., 2001, 84: 129-137.

[151]

Zadeh N, . Ectopia lentis as the presenting and primary feature in Marfan syndrome. Am. J. Med. Genet. A., 2011, 155: 2661-2668.

[152]

Nemet AY, Assia EI, Apple DJ, Barequet IS. Current concepts of ocular manifestations in Marfan syndrome. Surv. Ophthalmol., 2006, 51: 561-575.

[153]

Dwyer EM Jr., Troncale F. Spontaneous pneumothorax and pulmonary disease in the marfan syndrome. Report of two cases and review of the literature. Ann. Intern. Med., 1965, 62: 1285-1292.

[154]

Judge DP, Dietz HC. Marfan's syndrome. Lancet, 2005, 366: 1965-1976.

[155]

Maron BJ, . Recommendations for physical activity and recreational sports participation for young patients with genetic cardiovascular diseases. Circulation, 2004, 109: 2807-2816.

[156]

Engelfriet PM, Boersma E, Tijssen JG, Bouma BJ, Mulder BJ. Beyond the root: dilatation of the distal aorta in Marfan's syndrome. Heart, 2006, 92: 1238-1243.

[157]

Ladouceur M, . Effect of beta-blockade on ascending aortic dilatation in children with the marfan syndrome. Am. J. Cardiol., 2007, 99: 406-409.

[158]

Detaint D, . Rationale and design of a randomized clinical trial (Marfan Sartan) of angiotensin II receptor blocker therapy versus placebo in individuals with Marfan syndrome. Arch. Cardiovasc. Dis., 2010, 103: 317-325.

[159]

Cañadas V, Vilacosta I, Bruna I, Fuster V. Marfan syndrome. Part 2: treatment and management of patients. Nat. Rev. Cardiol., 2010, 7: 266-276.

[160]

Collins MT, . Thyroid carcinoma in the McCune-Albright syndrome: contributory role of activating Gsα mutations. J. Clin. Endocrinol. Metab., 2003, 88: 4413-4417.

[161]

Dumitrescu, C. E. & Collins, M. T. McCune-Albright syndrome. Orphanet. J. Rare. Dis. 3, 12 (2008).

[162]

Chen, H. McCune-Albright Syndrome. (New York: Springer, 2017).

[163]

Boyce AM, Florenzano P, de Castro LF & Collins MT. Fibrous Dysplasia/McCune-Albright Syndrome. (Seattle: Univ. Washington Press, 2018).

[164]

Brillante B, Guthrie L, van Ryzin C. McCune–Albright syndrome: an overview of clinical features. J. Pediatr. Nurs., 2015, 30: 815-817.

[165]

Pichard DC, Boyce AM, Collins MT, Cowen EW. Oral pigmentation in McCune-Albright syndrome. JAMA Dermatol., 2014, 150: 760-763.

[166]

Collins MT, Singer FR, Eugster E. McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia. Orphanet J. Rare Dis., 2012, 7

[167]

Lee JS, . Clinical guidelines for the management of craniofacial fibrous dysplasia. Orphanet J. Rare Dis., 2012, 7

[168]

Salenave S, Boyce AM, Collins MT, Chanson P. Acromegaly and McCune-Albright syndrome. J. Clin. Endocrinol. Metab., 2014, 99: 1955-1969.

[169]

Akintoye SO, . Dental characteristics of fibrous dysplasia and McCune-albright syndrome. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2003, 96: 275-282.

[170]

Akintoye SO, Boyce AM, Collins MT. Dental perspectives in fibrous dysplasia and McCune–Albright syndrome. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol., 2013, 116: e149-e155.

[171]

Sadeghi SM, Hosseini SN. Spontaneous conversion of fibrous dysplasia into osteosarcoma. J. Craniofac. Surg., 2011, 22: 959-961.

[172]

de Araújo PIMP, Soares VYR, Queiroz AL, Santos AMD, Nascimento LA. Sarcomatous transformation in the McCune–Albright syndrome. Oral. Maxillofac. Surg., 2012, 16: 217-220.

[173]

Leopardi M, Parziale V, Ciavarella D, Chimenti C. Maxillary bone lesions in McCune-Albright syndrome: a case report. Prog. Orthod., 2011, 12: 84-89.

[174]

Akintoye SO, . Characterization ofgsp-mediated growth hormone excess in the context of McCune-Albright syndrome. J. Clin. Endocrinol. Metab., 2002, 87: 5104-5112.

[175]

Robinson C, Collins MT, Boyce AM. Fibrous dysplasia/McCune-Albright syndrome: clinical and translational perspectives. Curr. Osteoporos. Rep., 2016, 14: 178-186.

[176]

Stanton RP, . The surgical management of fibrous dysplasia of bone. Orphanet J. Rare Dis., 2012, 7

[177]

Paul SM, . Disease severity and functional factors associated with walking performance in polyostotic fibrous dysplasia. Bone, 2014, 60: 41-47.

[178]

Becelli, R., Perugini, M., Cerulli, G., Carboni, A. & Renzi, G. Surgical treatment of fibrous dysplasia of the cranio-maxillo-facial area. Review of the literature and personal experience form 1984 to 1999. Minerva Stomatol. 51, 293–300 (2002).

[179]

Kuznetsov SA, . Age-dependent demise of GNAS-mutated skeletal stem cells and “normalization” of fibrous dysplasia of bone. J. Bone Miner. Res., 2008, 23: 1731-1740.

[180]

Riminucci M, . The histopathology of fibrous dysplasia of bone in patients with activating mutations of the Gs? Gene: site-specific patterns and recurrent histological hallmarks. J. Pathol., 1999, 187: 249-258.

[181]

Ozawa T, . Long-term follow-up of a case of cheek hyperpigmentation associated with McCune-Albright syndrome treated with Q-switched ruby laser. Dermatol. Surg., 2011, 37: 263-266.

[182]

Tessaris D, . Thyroid abnormalities in children and adolescents with McCune-Albright syndrome. Horm. Res. Paediatr., 2012, 78: 151-157.

[183]

Stamou MI, Georgopoulos NA. Kallmann syndrome: phenotype and genotype of hypogonadotropic hypogonadism. Metabolism, 2018, 86: 124-134.

[184]

Balasubramanian, R. Isolated Gonadotropin-Releasing Hormone (GnRH) Deficiency (Seattle: Univ. Washington Press, 2017).

[185]

Balasubramanian R, Crowley WF Jr.. Isolated GnRH deficiency: a disease model serving as a unique prism into the systems biology of the GnRH neuronal network. Mol. Cell. Endocrinol., 2011, 346: 4-12.

[186]

Mitchell AL, Dwyer A, Pitteloud N, Quinton R. Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory. Trends Endocrinol. Metab., 2011, 22: 249-258.

[187]

Boehm U, . European consensus statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol., 2015, 11: 547-564.

[188]

Tickotsky N, Moskovitz M. Renal agenesis in kallmann syndrome: a network approach. Ann. Hum. Genet., 2014, 78: 424-433.

[189]

Sato N, . Clinical assessment and mutation analysis of kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, orKAL2) in five families and 18 sporadic patients. J. Clin. Endocrinol. Metab., 2004, 89: 1079-1088.

[190]

Bailleul-Forestier I, . Dental agenesis in Kallmann syndrome individuals with FGFR1 mutations. Int. J. Paediatr. Dent., 2010, 20: 305-312.

[191]

Nie M, . Analysis of genetic and clinical characteristics of a Chinese Kallmann syndrome cohort with ANOS1 mutations. Eur. J. Endocrinol., 2017, 177: 389-398.

[192]

Aoyama K, . Molecular genetic and clinical delineation of 22 patients with congenital hypogonadotropic hypogonadism. J. Pediatr. Endocrinol. Metab., 2017, 30: 1111-1118.

[193]

Laitinen EM, Hero M, Vaaralahti K, Tommiska J, Raivio T. Bone mineral density, body composition and bone turnover in patients with congenital hypogonadotropic hypogonadism. Int. J. Androl., 2012, 35: 534-540.

[194]

Iolascon G, . Bone involvement in males with Kallmann disease. Aging Clin. Exp. Res., 2015, 27: 31-36.

[195]

Dodé C, Hardelin JP. Kallmann syndrome. Eur. J. Hum. Genet., 2009, 17: 139-146.

[196]

Chan E, Wayne C, Nasr A. & FRCSC for Canadian Association of Pediatric Surgeon Evidence-Based Resource. Ideal timing of orchiopexy: a systematic review. Pediatr. Surg. Int., 2014, 30: 87-97.

[197]

Levitus M, . The DNA helicase BRIP1 is defective in Fanconi anemia complementation group. J. Nat. Genet., 2005, 37: 934-935.

[198]

Meetei AR, . A novel ubiquitin ligase is deficient in Fanconi anemia. Nat. Genet., 2003, 35: 165-170.

[199]

Bagby GC, Alter BP. Fanconi anemia. Semin. Hematol., 2006, 43: 147-156.

[200]

Bagby GC. Genetic basis of Fanconi anemia. Curr. Opin. Hematol., 2003, 10: 68-76.

[201]

Godthelp BC, Artwert F, Joenje H, Zdzienicka MZ. Impaired DNA damage-induced nuclear Rad51 foci formation uniquely characterizes Fanconi anemia group D1. Oncogene, 2002, 21: 5002-5005.

[202]

Gowen LC, Avrutskaya AV, Latour AM, Koller BH, Leadon SA. BRCA1 required for transcription-coupled repair of oxidative DNA damage. Science, 1998, 281: 1009-1012.

[203]

Fagerlie SR, Koretsky T, Torok-Storb B, Bagby GC. Impaired type I IFN-Induced Jak/STAT signaling in FA-C cells and abnormal CD4+ Th cell subsets in fancc-/- mice. J. Immunol., 2004, 173: 3863-3870.

[204]

Pang Q, . Role of double-stranded RNA-dependent protein kinase in mediating hypersensitivity of Fanconi anemia complementation group C cells to interferon gamma, tumor necrosis factor-alpha, and double-stranded RNA. Blood, 2001, 97: 1644-1652.

[205]

Chirnomas SD, Kupfer GM. The inherited bone marrow failure syndromes. Pediatr. Clin. North Am., 2013, 60: 1291-1310.

[206]

Rosenberg PS, Huang Y, Alter BP. Individualized risks of first adverse events in patients with Fanconi anemia. Blood, 2004, 104: 350-355.

[207]

Soulier J. Fanconi anemia. Hematology, 2011, 2011: 492-497.

[208]

Sii-Felice K, . Role of fanconi DNA repair pathway in neural stem cell homeostasis. Cell Cycle, 2008, 7: 1911-1915.

[209]

Alter BP, Rosenberg PS, Brody LC. Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J. Med. Genet., 2007, 44: 1-9.

[210]

Törnquist AL, Martin L, Winiarski J, Fahnehjelm KT. Ocular manifestations and visual functions in patients with Fanconi anaemia. Acta Ophthalmol., 2014, 92: 171-178.

[211]

Lin J, Kutler DI. Why otolaryngologists need to be aware of Fanconi anemia. Otolaryngol. Clin. North. Am., 2013, 46: 567-577.

[212]

Schneider M, Chandler K, Tischkowitz M, Meyer S. Fanconi anaemia: genetics, molecular biology, and cancer-implications for clinical management in children and adults. Clin. Genet., 2015, 88: 13-24.

[213]

de Latour RP, . Recommendations on hematopoietic stem cell transplantation for inherited bone marrow failure syndromes. Bone Marrow Transplant., 2015, 50: 1168-1172.

[214]

MacMillan ML, . Haematopoietic cell transplantation in patients with Fanconi anaemia using alternate donors: results of a total body irradiation dose escalation trial. Br. J. Haematol., 2000, 109: 121-129.

[215]

Kee Y, D’Andrea AD. Molecular pathogenesis and clinical management of Fanconi anemia. J. Clin. Invest., 2012, 122: 3799-3806.

[216]

Rio P, . Targeted gene therapy and cell reprogramming in Fanconi anemia. EMBO Mol. Med., 2014, 6: 835-848.

[217]

Laimer M, Prodinger C, Bauer JW. Hereditary epidermolysis bullosa. J. Dtsch. Dermatol. Ges., 2015, 13: 1125-1133.

[218]

Intong LRA, Murrell DF. Inherited epidermolysis bullosa: new diagnostic criteria and classification. Clin. Dermatol., 2012, 30: 70-77.

[219]

Tabor A, . Raising awareness among healthcare providers about epidermolysis bullosa and advancing toward a cure. J. Clin. Aesthet. Dermatol., 2017, 10: 36-48.

[220]

Has, C. & Fischer, J. Inherited epidermolysis bullosa: new diagnostics and new clinical phenotypes. Exp. Dermatol. https://doi.org/10.1111/exd.13668 (2018).

[221]

Fine, J. D. et al. The classification of inherited epidermolysis bullosa (EB): report of the third international consensus meeting on diagnosis and classification of EB. J. Am. Acad. Dermatol. 58, 931–950 (2008).

[222]

Haber RM, Hanna W, Ramsay CA, Boxall LBH. Hereditary epidermolysis bullosa. J. Am. Acad. Dermatol., 1985, 13: 252-278.

[223]

Mitsuhashi Y, Hashimoto I. Genetic abnormalities and clinical classification of epidermolysis bullosa. Arch. Dermatol. Res., 2003, 295: S29-S33.

[224]

Wright JT, Fine JD, Johnson L. Hereditary epidermolysis bullosa: oral manifestations and dental management. Pediatr. Dent., 1993, 15: 242-248.

[225]

Gedde-Dahl, T. J. Epidermolysis Bullosa: A Clinical, Genetic, and Epidemiologic Study (Baltimore: John Hopkins Press, 1971).

[226]

Wright JT, Fine JD, Johnson L. Dental caries risk in hereditary epidermolysis bullosa. Pediatr. Dent., 1994, 16: 427-432.

[227]

Kerns ML, DePianto D, Dinkova-Kostova AT, Talalay P, Coulombe PA. Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc. Natl Acad. Sci. USA, 2007, 104: 14460-14465.

[228]

Cohn HI, Teng JMC. Advancement in management of epidermolysis bullosa. Curr. Opin. Pediatr., 2016, 28: 507-516.

[229]

Dormandy TL. Gastrointestinal polyposis with mucocutaneous pigmentation (peutz–jeghers syndrome). N. Engl. J. Med., 1957, 256: 1093-1103.

[230]

Tiainen M, Vaahtomeri K, Ylikorkala A, Makela TP. Growth arrest by the LKB1 tumor suppressor: induction ofp21(WAF1/CIP1). Hum. Mol. Genet., 2002, 11: 1497-1504.

[231]

Karuman P, . The peutz-jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol. Cell, 2001, 7: 1307-1319.

[232]

Morton DG, Roos JM, Kemphues KJ. Par-4, a gene required for cytoplasmic localization and determination of specific cell types in Caenorhabditis elegans embryogenesis. Genetics, 1992, 130: 771-790.

[233]

Beggs AD, . Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut, 2010, 59: 975-986.

[234]

James, W. D., Elston, D. M. & Berger, T. G. Andrews' Diseases of the Skin: Clinical Dermatology, 7e. (Philadelphia: Elsevier, 2005).

[235]

Choudhury, S., Das, A., Misra, P. & Ray, U. & Sarangi, S. Peutz-jeghers syndrome: a circumventable emergency. Indian J. Dermatol. 63, 168–171 (2018).

[236]

Boardman LA. Increased risk for cancer in patients with the peutz-jeghers syndrome. Ann. Intern. Med., 1998, 128: 896-899.

[237]

Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N. Engl. J. Med., 2014, 371: 1039-1049.

[238]

Weng MT, Ni YH, Su YN, Wong JM, Wei SC. Clinical and genetic analysis of peutz-jeghers syndrome patients in Taiwan. J. Formos. Med. Assoc., 2010, 109: 354-361.

[239]

Choi HS, Park YJ, Park JG. Peutz-Jeghers syndrome: a new understanding. J. Korean Med. Sci., 1999, 14: 2-7.

[240]

Higham P, Alawi F, Stoopler ET. Medical management update: peutz jeghers syndrome. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2010, 109: 5-11.

[241]

Tebani A, . Clinical and molecular characterization of patients with mucopolysaccharidosis type I in an algerian series. Int. J. Mol. Sci., 2016, 17: 743-751.

[242]

Melbouci M, . Growth impairment in mucopolysaccharidoses. Mol. Genet. Metab., 2018, 124: 1-10.

[243]

Neufeld, E. F. & Muenzer, J. in The Metabolic and Molecular Bases of Inherited Disease (eds Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) (New-York: McGraw-Hill, 2001).

[244]

Różdżyńska-Świątkowska A, Jurecka A, Cieślik J, Tylki-Szymańska A. Growth patterns in children with mucopolysaccharidosis I and II. World J. Pediatr., 2015, 11: 226-231.

[245]

Martin R, . Recognition and diagnosis of mucopolysaccharidosis II (hunter syndrome). Pediatrics, 2008, 121: e377-e386.

[246]

de Ruijter J, . Growth in patients with mucopolysaccharidosis type III (Sanfilippo disease). J. Inherit. Metab. Dis., 2014, 37: 447-454.

[247]

Montaño AM, Tomatsu S, Brusius A, Smith M, Orii T. Growth charts for patients affected with Morquio A disease. Am. J. Med. Genet. A, 2008, 146A: 1286-1295.

[248]

Quartel A, . Growth charts for individuals with mucopolysaccharidosis VI (maroteaux-lamy syndrome). JIMD Rep., 2015, 18: 1-11.

[249]

Montaño AM, . Clinical course of sly syndrome (mucopolysaccharidosis type VII). J. Med. Genet., 2016, 53: 403-418.

[250]

Keilmann A, Bendel F, Nospes S, Lampe C, Läßig AK. Alterations of mucosa of the larynx and hypopharynx in patients with mucopolysaccharidoses. J. Laryngol. Otol., 2015, 130: 194-200.

[251]

Shapiro EG, Jones SA, Escolar ML. Developmental and behavioral aspects of mucopolysaccharidoses with brain manifestations — neurological signs and symptoms. Mol. Genet. Metab., 2017, 122: 1-7.

[252]

Sarmento DJdS, . Relationship between occlusal features and enzyme replacement therapy in patients with mucopolysaccharidoses. J. Oral. Maxillofac. Surg., 2018, 76: 785-792.

[253]

de Almeida-Barros RQ, . Oral and systemic manifestations of mucopolysaccharidosis type VI: a report of seven cases. Quintessence Int., 2012, 43: e32-e38.

[254]

Kantaputra PN, . Oral manifestations of 17 patients affected with mucopolysaccharidosis type VI. J. Inherit. Metab. Dis., 2013, 37: 263-268.

[255]

Alpöz AR, . The oral manifestations of Maroteaux-Lamy syndrome (mucopolysaccharidosis VI): a case report. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2006, 101: 632-637.

[256]

Giugliani R, . Mucopolysaccharidosis I, II, and VI: brief review and guidelines for treatment. Genet. Mol. Biol., 2010, 33: 589-604.

[257]

Harmatz P. Enzyme replacement therapy with galsulfase for mucopolysaccharidosis VI: clinical facts and figures. Turk. J. Pediatr., 2010, 52: 443-449.

[258]

Valayannopoulos V, Wijburg FA. Therapy for the mucopolysaccharidoses. Rheumatology, 2011, 50: v49-v59.

[259]

Muenzer J, Wraith JE, Clarke LA. Mucopolysaccharidosis I: management and treatment guidelines. Pediatrics, 2009, 123: 19-29.

[260]

Parini R, . Open issues in mucopolysaccharidosis type I-hurler. Orphanet J. Rare Dis., 2017, 12

[261]

Kubaski F, . Hematopoietic stem cell transplantation for patients with mucopolysaccharidosis II. Biol. Blood. Marrow Transplant., 2017, 23: 1795-1803.

[262]

Fan JQ. A counterintuitive approach to treat enzyme deficiencies: use of enzyme inhibitors for restoring mutant enzyme activity. Biol. Chem., 2008, 389: 1-11.

[263]

Piotrowska E, . Two-year follow-up of sanfilippo disease patients treated with a genistein-rich isoflavone extract: assessment of effects on cognitive functions and general status of patients. Med. Sci. Monit., 2011, 17: CR196-CR202.

[264]

Giugliani R, Harmatz P, Wraith JE. Management guidelines for mucopolysaccharidosis VI. Pediatrics, 2007, 120: 405-418.

[265]

Noh H, Lee JI. Current and potential therapeutic strategies for mucopolysaccharidoses. J. Clin. Pharm. Ther., 2014, 39: 215-224.

[266]

Sawamoto K, Chen HH, Almeciga-Diaz CJ, Mason RW, Tomatsu S. Gene therapy for mucopolysaccharidoses. Mol. Genet. Metab., 2018, 123: 59-68.

[267]

Mikulicz, J. Über Eine Eigenartige Symmetrische Erkrankung der Tranen und Mundspeicheldrusen (Stuttgart: Theodor Billroth, 1892).

[268]

Yao Q, Wu G, Hoschar A. IgG4-related Mikulicz's disease is a multiorgan lymphoproliferative disease distinct from Sjogren's syndrome: a Caucasian patient and literature review. Clin. Exp. Rheumatol., 2013, 31: 289-294.

[269]

Umehara H, . Comprehensive diagnostic criteria for IgG4-related disease (IgG4-RD), 2011. Mod. Rheumatol., 2012, 22: 21-30.

[270]

Maehara T, . Interleukin-21 contributes to germinal centre formation and immunoglobulin G4 production in IgG4-related dacryoadenitis and sialoadenitis, so-called Mikulicz's disease. Ann. Rheum. Dis., 2012, 71: 2011-2020.

[271]

Bhatti RM, Stelow EB. IgG4-related disease of the head and neck. Adv. Anat. Pathol., 2013, 20: 10-16.

[272]

Yamamoto M, Takahashi H, Sugai S, Imai K. Clinical and pathological characteristics of Mikulicz's disease (IgG4-related plasmacytic exocrinopathy). Autoimmun. Rev., 2005, 4: 195-200.

[273]

Nelson WR, Kay S, Salley JJ. Mikuliczʼs disease of the palate. Ann. Surg., 1963, 157: 152-156.

[274]

Hamano H, . High serum IgG4 concentrations in patients with sclerosing pancreatitis. N. Engl. J. Med., 2001, 344: 732-738.

[275]

Hamed G, . Inflammatory lesions of the lung, submandibular gland, bile duct and prostate in a patient with IgG4-associated multifocal systemic fibrosclerosis. Respirology, 2007, 12: 455-457.

[276]

Kitagawa S, . Abundant IgG4-positive plasma cell infiltration characterizes chronic sclerosing sialadenitis (Kuttner’s tumor). Am. J. Surg. Pathol., 2005, 29: 783-791.

[277]

Abe A, . The clinical characteristics of patients with IgG4-related disease with infiltration of the labial salivary gland by IgG4-positive cells. Mod. Rheumatol., 2014, 24: 949-952.

[278]

Himi T, Takano K, Yamamoto M, Naishiro Y, Takahashi H. A novel concept of Mikulicz's disease as IgG4-related disease. Auris Nasus Larynx, 2012, 39: 9-17.

[279]

Moriyama M, . Clinical characteristics of Mikulicz’s disease as an IgG4-related disease. Clin. Oral. Investig., 2013, 17: 1995-2002.

[280]

Merlini G, Bellotti V. Molecular mechanisms of amyloidosis. N. Engl. J. Med., 2003, 349: 583-596.

[281]

Borowicz J, Gillespie M, Miller R. Cutaneous amyloidosis. Skinmed, 2011, 9: 96-100. quiz 101

[282]

Merlini G, Comenzo RL, Seldin DC, Wechalekar A, Gertz MA. Immunoglobulin light chain amyloidosis. Expert. Rev. Hematol., 2014, 7: 143-156.

[283]

Caccialanza R, . Nutritional status of outpatients with systemic immunoglobulin light-chain amyloidosis. Am. J. Clin. Nutr., 2006, 83: 350-354.

[284]

Milani P, Merlini G, Palladini G. Light chain amyloidosis. Mediterr. J. Hematol. Infect. Dis., 2018, 10: e2018022.

[285]

Nelson LM, Gustafsson F, Gimsing P. Characteristics and long-term outcome of patients with systemic immunoglobulin light-chain amyloidosis. Acta Haematol., 2014, 133: 336-346.

[286]

Prokaeva T, . Soft tissue, joint, and bone manifestations of AL amyloidosis: clinical presentation, molecular features, and survival. Arthritis Rheum., 2007, 56: 3858-3868.

[287]

Palladini G. Association of melphalan and high-dose dexamethasone is effective and well tolerated in patients with AL (primary) amyloidosis who are ineligible for stem cell transplantation. Blood, 2004, 103: 2936-2938.

[288]

Merlini G, Wechalekar AD, Palladini G. Systemic light chain amyloidosis: an update for treating physicians. Blood, 2013, 121: 5124-5130.

[289]

Gertz MA. Immunoglobulin light chain amyloidosis: 2014 update on diagnosis, prognosis, and treatment. Am. J. Hematol., 2014, 89: 1132-1140.

[290]

Clayton-Smith J, Laan L. Angelman syndrome: a review of the clinical and genetic aspects. J. Med. Genet., 2003, 40: 87-95.

[291]

Mabb AM, Judson MC, Zylka MJ, Philpot BD. Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci., 2011, 34: 293-303.

[292]

Bird L. Angelman syndrome: review of clinical and molecular aspects. Appl. Clin. Genet., 2014, 7: 93-104.

[293]

Dagli A, Buiting K, Williams CA. Molecular and clinical aspects of angelman syndrome. Mol. Syndromol., 2012, 2: 100-112.

[294]

Pelc K, Boyd SG, Cheron G, Dan B. Epilepsy in Angelman syndrome. Seizure, 2008, 17: 211-217.

[295]

Williams CA, Driscoll DJ, Dagli AI. Clinical and genetic aspects of Angelman syndrome. Genet. Med., 2010, 12: 385-395.

[296]

Kyllerman, M. in Handbook of Clinical Neurology 3rd edn, Vol. 111 (eds Dulac, O., Lassonde, M. & Sarnat, H.) Ch. 32 (Philadelphia: Elseiver Press, 2013).

[297]

Jaffe, R., Weiss, L. M. & Facchetti, F. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edn, Vol. 2 (eds Swerdlow SH, Campo E, Harris NL, et al) Ch. 17 (Lyon, France: IARC. Press, 2008).

[298]

Hand A. Polyuria and tuberculosis. Arch. Pediatr., 1893, 10: 673-675.

[299]

Broadbent V, . Spontaneous remission of multi-system histiocytosis X. Lancet, 1984, 1: 253-254.

[300]

de Filippi P, . Specific polymorphisms of cytokine genes are associated with different risks to develop single-system or multi-system childhood Langerhans cell histiocytosis. Br. J. Haematol., 2006, 132: 784-787.

[301]

Willman CL, . Langerhans'-cell histiocytosis (histiocytosis X)—a clonal proliferative disease. N. Engl. J. Med., 1994, 331: 154-160.

[302]

Badalian-Very G, . Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood, 2010, 116: 1919-1923.

[303]

Rollins BJ. Genomic alterations in langerhans cell histiocytosis. Hematol. Oncol. Clin. North. Am., 2015, 29: 839-851.

[304]

Margo CE, Goldman DR. Langerhans cell histiocytosis. Surv. Ophthalmol., 2008, 53: 332-358.

[305]

Chu T. Langerhans cell histiocytosis. Australas. J. Dermatol., 2001, 42: 237-242.

[306]

Leonidas JC, Guelfguat M, Valderrama E. Langerhans' cell histiocytosis. Lancet, 2003, 361: 1293-1295.

[307]

Lian C, Lu Y, Shen S. Langerhans cell histiocytosis in adults: a case report and review of the literature. Oncotarget, 2016, 7: 18678-18683.

[308]

Meyer JS, de Camargo B. The role of radiology in the diagnosis and follow-up of langerhans cell histiocytosis. Hematol. Oncol. Clin. North. Am., 1998, 12: 307-326.

[309]

Kiratli H, Tarlan B, Söylemezoğlu F. Langerhans cell histiocytosis of the orbit. Eur. J. Ophthalmol., 2013, 23: 578-583.

[310]

Ginat DT, Johnson DN, Cipriani NA. Langerhans cell histiocytosis of the temporal bone. Head. Neck Pathol., 2016, 10: 209-212.

[311]

Zajko J. Mandibular Langerhans cell histiocytosis in an adult. Bratisl. Lek. Listy, 2013, 114: 488-490.

[312]

Coppes-Zantinga A, Egeler RM. The Langerhans cell histiocytosis X files revealed. Br. J. Haematol., 2002, 116: 3-9.

[313]

Krooks J, Minkov M, Weatherall AG. Langerhans cell histiocytosis in children. J. Am. Acad. Dermatol., 2018, 78: 1047-1056.

[314]

Gadner H, . Improved outcome in multisystem Langerhans cell histiocytosis is associated with therapy intensification. Blood, 2008, 111: 2556-2562.

[315]

Gadner H, . Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis. Blood, 2013, 121: 5006-5014.

[316]

Simko SJ, McClain KL, Allen CE. Up-front therapy for LCH: is it time to test an alternative to vinblastine/prednisone?. Br. J. Haematol., 2015, 169: 299-301.

[317]

Nagarajan R, Neglia J, Ramsay N, Baker KS. Successful treatment of refractory langerhans cell histiocytosis with unrelated cord blood transplantation. J. Pediatr. Hematol. Oncol., 2001, 23: 629-632.

[318]

Haroche J, . Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood, 2013, 121: 1495-1500.

Funding

National Natural Science Foundation of China (National Science Foundation of China)(81621062)

Key Research and Development Program of Science and Technology Department of Sichuan Province 2018SZ0119; Program of science and technology bureau of Chengdu (2018-YF05-00258-SN) Sichuan Province Science and Technology Innovation Team Program (2017TD0016)

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/