Enamel biomimetics—fiction or future of dentistry

Mirali Pandya , Thomas G. H. Diekwisch

International Journal of Oral Science ›› 2019, Vol. 11 ›› Issue (1) : 8

PDF
International Journal of Oral Science ›› 2019, Vol. 11 ›› Issue (1) : 8 DOI: 10.1038/s41368-018-0038-6
Review Article

Enamel biomimetics—fiction or future of dentistry

Author information +
History +
PDF

Abstract

Five pathways for tooth enamel engineering hold great promise for developing new technologies, leading to novel biomaterials and biotechnologies to regenerate enamel tissue. Tooth enamel is a unique tissue-specific biomaterial with exceptional structural and mechanical properties. In recent years, many approaches have been adopted to generate or regenerate this complex tissue; Mirali Pandya and Thomas Diekwisch of Texas A&M College of Dentistry, USA conducted a review of the current state and future directions of enamel tissue engineering. In their review, the authors focused on five pathways for enamel tissue engineering: (1) physical synthesis of enamel; (2) biochemical enamel engineering; (3) in situ enamel engineering; (4) cell-based enamel engineering; and (5) whole tooth regeneration. The authors conclude that those five approaches will help identify the biological mechanisms that lead to the generation of tooth enamel.

Cite this article

Download citation ▾
Mirali Pandya, Thomas G. H. Diekwisch. Enamel biomimetics—fiction or future of dentistry. International Journal of Oral Science, 2019, 11(1): 8 DOI:10.1038/s41368-018-0038-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Robinson RE. The organic constituent of enamel. Tufts Dent. Outlook, 1945, 19: 5-10.

[2]

Jansen MT. Serial sections of undecalcified enamel. J. Dent. Res., 1946, 25: 355-365.

[3]

Reed BP, Reed CI. X-ray diffraction studies on human dental enamel. Fed. Proc., 1947, 6: 185.

[4]

Agnew RG. Observations on enamel formation. J. Dent. Res., 1947, 26: 462.

[5]

Szczes A, Holysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interface Sci., 2017, 249: 321-330.

[6]

Loo SC, Moore T, Banik B, Alexis F. Biomedical applications of hydroxyapatite nanoparticles. Curr. Pharm. Biotechnol., 2010, 11: 333-342.

[7]

Lin, K. & Chang, J. Hydroxyapatite (Hap) for Biomedical Applications (ed Michael M.) 3-19 (Woodhead Publishing, Sawston, UK, 2015).

[8]

Habraken W, Habibovic P, Epple M, Bohner M. Calcium phosphates in biomedical applications: materials for the future?. Mater. Today, 2016, 19: 69-87.

[9]

Nasr-Esfahani M, Fekri S. Alumina/TiO2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air. React. Kinet., Mech. Catal., 2012, 107: 89-103.

[10]

Simmer JP, Richardson AS, Hu YY, Smith CE, Ching-Chun HuJ. A post-classical theory of enamel biomineralization… and why we need one. Int. J. Oral. Sci., 2012, 4: 129-134.

[11]

Uskokovic V. Prospects and pits on the path of biomimetics: the case of tooth enamel. J. Biomim. Biomater. Tissue Eng., 2010, 8: 45-78.

[12]

Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics. J. Mater. Chem. B, 2015, 3: 3112-3129.

[13]

Mann S. The biomimetics of enamel: a paradigm for organized biomaterials synthesis. Ciba Found. Symp., 1997, 205: 261-269. discussion 269-274

[14]

Anderson B. The fate of the ameloblastic cells of the enamel organ. J. Dent. Res., 1929, 9: 689-694.

[15]

Schroeder HE, Listgarten MA. Fine structure of the developing epithelial attachment of human teeth. Monogr. Dev. Biol., 1971, 2: 1-134.

[16]

Bronckers AL, Lyaruu DM, Jalali R, DenBesten PK. Buffering of protons released by mineral formation during amelogenesis in mice. Eur. J. Oral. Sci., 2016, 124: 415-425.

[17]

Lefkowitz W, Vente VA. Observations on the pH of enamel; preliminary report. N. Y. State Dent. J., 1951, 17: 373-375.

[18]

Lacruz RS, Nanci A, Kurtz I, Wright JT, Paine ML. Regulation of pH during amelogenesis. Calcif. Tissue Int., 2010, 86: 91-103.

[19]

Hanaizumi Y, Yokota R, Domon T, Wakita M, Kozawa Y. The initial process of enamel prism arrangement and its relation to the Hunter-Schreger bands in dog teeth. Arch. Histol. Cytol., 2010, 73: 23-36.

[20]

Line SRP. The development and evolution of mammalian enamel: structural and functional aspects. Braz. J. Morphol. Sci., 2005, 22: 67-72.

[21]

Diekwisch T, . Antisense inhibition of AMEL translation demonstrates supramolecular controls for enamel HAP crystal growth during embryonic mouse molar development. Development, 1993, 117: 471-482.

[22]

Diekwisch TG, Berman BJ, Gentner S, Slavkin HC. Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res., 1995, 279: 149-167.

[23]

Ryu SC, . Regeneration of a tooth enamel layer using hydroxyapatite regeneration of a micro-scratched tooth enamel layer by nanoscale hydroxyapatite solution. Bull. Korean Chem. Soc., 2009, 30: 887-890.

[24]

Kirkham J, . Enamel research: priorities and future directions. Front. Physiol., 2017, 8: 513.

[25]

Klein OD, . Meeting report: a hard look at the state of enamel research. Int. J. Oral. Sci., 2017, 9: e3.

[26]

Jayasudha Baswaraj, Navin HK, Prasanna KB. Enamel regeneration—current progress and challenges. J. Clin. Diagn. Res., 2014, 8: 6-9.

[27]

Moradian-Oldak J. The regeneration of tooth enamel. Dimens. Dent. Hyg., 2009, 7: 12-15.

[28]

Chen H, Clarkson BH, Sun K, Mansfield JF. Self-assembly of synthetic hydroxyapatite nanorods into an enamel prism-like structure. J. Colloid Interface Sci., 2005, 288: 97-103.

[29]

Chen H, . Acellular synthesis of a human enamel‐like microstructure. Adv. Mater., 2006, 18: 1846-1851.

[30]

Ren F, . Growth of one-dimensional single-crystalline hydroxyapatite nanorods. J. Cryst. Growth, 2012, 349: 75-82.

[31]

Wang H, . Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine. Sci. Rep., 2017, 7

[32]

Pandya M, . Posttranslational amelogenin processing and changes in matrix assembly during enamel development. Front. Physiol., 2017, 8: 790.

[33]

Robinson C, Briggs HD, Atkinson PJ, Weatherell JA. Matrix and mineral changes in developing enamel. J. Dent. Res., 1979, 58: 871-882.

[34]

Robinson C, Kirkham J, Hallsworth AS. Volume distribution and concentration of protein, mineral and water in developing bovine enamel. Arch. Oral. Biol., 1988, 33: 159-162.

[35]

Atsawasuwan P, . Expression and function of enamel-related gene products in calvarial development. J. Dent. Res., 2013, 92: 622-628.

[36]

Fincham AG, Simmer JP. Amelogenin proteins of developing dental enamel. Ciba Found. Symp., 1997, 205: 118-130. discussion 130-114

[37]

Eggert FM, Allen GA, Burgess RC. Amelogenins. Purification and partial characterization of proteins from developing bovine dental enamel. Biochem. J., 1973, 131: 471-484.

[38]

Diekwisch TGH, Ware J, Fincham AG, Zeichner-David M. Immunohistochemical similarities and differences between amelogenin and tuftelin gene products during tooth development. J. Histochem. Cytochem., 1997, 45: 859-866.

[39]

Lu Y, . Functions of KLK4 and MMP-20 in dental enamel formation. Biol. Chem., 2008, 389: 695-700.

[40]

Nagano T, . Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. J. Dent. Res., 2009, 88: 823-828.

[41]

Bartlett JD. Dental enamel development: proteinases and their enamel matrix substrates. ISRN Dent., 2013, 2013: 684607.

[42]

Hu Y, . MMP20, KLK4, and MMP20/KLK4 double null mice define roles for matrix proteases during dental enamel formation. Mol. Genet. Genom. Med., 2016, 4: 178-196.

[43]

Eastoe J. Organic matrix of tooth enamel. Nature, 1960, 187: 411.

[44]

Eastoe J. Enamel protein chemistry-past, present and future. J. Dent. Res., 1979, 58: 753-764.

[45]

Margolis H, Beniash E, Fowler C. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J. Dent. Res., 2006, 85: 775-793.

[46]

Robinson C, Brookes SJ, Shore RC, Kirkham J. The developing enamel matrix: nature and function. Eur. J. Oral. Sci., 1998, 106: 282-291.

[47]

Glimcher M, Brickley-Parsons D, Levine P. Studies of enamel proteins during maturation. Calcif. Tissue Res., 1977, 24: 259-270.

[48]

Termine J, Torchia D, Conn K. Enamel matrix: structural proteins. J. Dent. Res., 1979, 58: 773-781.

[49]

Moradian-Oldak J. Protein-mediated enamel mineralization. Front. Biosci., 2012, 17: 1996.

[50]

lijima M, Moriwaki Y, Wen HB, Fincham AG, Moradian-Oldak J. Elongated growth of octacalcium phosphate crystals in recombinant amelogenin gels under controlled ionic flow. J. Dent. Res., 2002, 81: 69-73.

[51]

Moradian-Oldak J, lijima M, Bouropoulos N, Wen HB. Assembly of amelogenin proteolytic products and control of octacalcium phosphate crystal morphology. Connect. Tissue Res., 2003, 44(Suppl 1): 58-64.

[52]

Iijima M, Moradian-Oldak J. Interactions of amelogenins with octacalcium phosphate crystal faces are dose dependent. Calcif. Tissue Int., 2004, 74: 522-531.

[53]

Iijima M, Moradian-Oldak J. Control of apatite crystal growth in a fluoride containing amelogenin-rich matrix. Biomaterials, 2005, 26: 1595-1603.

[54]

Iijima M, Du C, Abbott C, Doi Y, Moradian-Oldak J. Control of apatite crystal growth by the co-operative effect of a recombinant porcine amelogenin and fluoride. Eur. J. Oral. Sci., 2006, 114(Suppl 1): 304-307.

[55]

Iijima M, Fan D, Bromley KM, Sun Z, Moradian-Oldak J. Tooth enamel proteins enamelin and amelogenin cooperate to regulate the growth morphology of octacalcium phosphate crystals. Cryst. Growth Des., 2010, 10: 4815-4822.

[56]

Fan D, . The cooperation of enamelin and amelogenin in controlling octacalcium phosphate crystal morphology. Cells Tissues Organs, 2011, 194: 194-198.

[57]

Gopinathan G, . The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation. Front. Physiol., 2014, 5: 430.

[58]

Yang X, Sun Z, Ma R, Fan D, Moradian-Oldak J. Amelogenin “nanorods” formation during proteolysis by Mmp-20. J. Struct. Biol., 2011, 176: 220-228.

[59]

Li QL, . A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel. BMC Biotechnol., 2014, 14: 32-32.

[60]

Fincham A, Belcourt A, Termine J, Butler W, Cothran W. Dental enamel matrix: sequences of two amelogenin polypeptides. Biosci. Rep., 1981, 1: 771-778.

[61]

Yuan Z, Collier P, Rosenbloom J, Gibson C. Analysis of amelogenin mRNA during bovine tooth development. Arch. Oral. Biol., 1996, 41: 205-213.

[62]

Le Norcy E, . Leucine-rich amelogenin peptides regulate mineralization in vitro. J. Dent. Res., 2011, 90: 1091-1097.

[63]

Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J. An amelogenin-chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomater., 2013, 9: 7289-7297.

[64]

Prajapati S, Ruan Q, Mukherjee K, Nutt S, Moradian-Oldak J. The presence of MMP-20 reinforces biomimetic enamel regrowth. J. Dent. Res., 2018, 97: 84-90.

[65]

Prajapati S, Tao J, Ruan Q, De Yoreo JJ, Moradian-Oldak J. Matrix metalloproteinase-20 mediates dental enamel biomineralization by preventing protein occlusion inside apatite crystals. Biomaterials, 2016, 75: 260-270.

[66]

Dean HT, Arnold FA Jr, Jay P, Knutson JW. Studies on mass control of dental caries through fluoridation of the public water supply. Public Health Rep., 1950, 65: 1403-1408.

[67]

Moreno EC, Kresak M, Zahradnik RT. Fluoridated hydroxyapatite solubility and caries formation. Nature, 1974, 247: 64.

[68]

Lynch RJ, Smith SR. Remineralization agents—new and effective or just marketing hype?. Adv. Dent. Res., 2012, 24: 63-67.

[69]

Martinez-Mier EA, . Relationship between enamel fluorosis severity and fluoride content. J. Dent., 2016, 46: 42-46.

[70]

Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials, 2009, 30: 478-483.

[71]

Guentsch A, . Biomimetic mineralization: effects on human enamel in vivo. Adv. Eng. Mater., 2010, 12: B571-B576.

[72]

Doi Y, Eanes ED, Shimokawa H, Termine JD. Inhibition of seeded growth of enamel apatite crystals by amelogenin and enamelin proteins in vitro. J. Dent. Res., 1984, 63: 98-105.

[73]

Zhu L, . Altered self-assembly and apatite binding of amelogenin induced by N-terminal proline mutation. Arch. Oral. Biol., 2011, 56: 331-336.

[74]

Jin T, . Elongated polyproline motifs facilitate enamel evolution through matrix subunit compaction. PLoS Biol., 2009, 7: e1000262.

[75]

Zhang X, Ramirez BE, Liao X, Diekwisch TG. Amelogenin supramolecular assembly in nanospheres defined by a complex helix-coil-PPII helix 3D-structure. PLoS ONE, 2011, 6: e24952.

[76]

Ravindranath RM, Devarajan A, Bringas P Jr. Enamel formation in vitro in mouse molar explants exposed to amelogenin polypeptides: ATMP and LRAP on enamel development. Arch. Oral. Biol., 2007, 52: 1161-1171.

[77]

Bagheri HG, . Study on the influence of leucine-rich amelogenin peptide (LRAP) on the remineralization of enamel defects via micro-focus x-ray computed tomography and nanoindentation. Biomed. Mater., 2015, 10: 035007.

[78]

Bagheri HG, . Leucine rich amelogenin peptide improves the remineralization of enamel lesions. Dent. Mater., 2014, 30: e172-e173.

[79]

Shafiei F, . Leucine‐rich amelogenin peptide (LRAP) as a surface primer for biomimetic remineralization of superficial enamel defects: an in vitro study. Scanning, 2015, 37: 179-185.

[80]

Mukherjee K, Ruan Q, Liberman D, White S, Moradian-Oldak J. Repairing human tooth enamel with leucine-rich amelogenin peptide–chitosan hydrogel. J. Mater. Res., 2016, 31: 555-563.

[81]

Kwak S, Litman A, Margolis H, Yamakoshi Y, Simmer J. Biomimetic enamel regeneration mediated by leucine-rich amelogenin peptide. J. Dent. Res., 2017, 96: 524-530.

[82]

Moradian-Oldak J, Bouropoulos N, Wang L, Gharakhanian N. Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal. Matix Biol., 2002, 21: 197-205.

[83]

Koop R, Merheb J, Quirynen M. Periodontal regeneration with enamel matrix derivative in reconstructive periodontal therapy: a systematic review. J. Periodontol., 2012, 83: 707-720.

[84]

Sculean A, . Emdogain in regenerative periodontal therapy. A review of the literature. Fogorv. Sz., 2007, 100: 220-232.

[85]

Cochran DL, . Periodontal regeneration with a combination of enamel matrix proteins and autogenous bone grafting. J. Periodontol., 2003, 74: 1269-1281.

[86]

Esposito M, Grusovin MG, Papanikolaou N, Coulthard P, Worthington HV. Enamel matrix derivative (Emdogain) for periodontal tissue regeneration in intrabony defects. A Cochrane systematic review. Eur. J. Oral. Implantol., 2009, 2: 247-266.

[87]

Cao Y, Mei ML, Li QL, Lo ECM, Chu CH. Enamel prism-like tissue regeneration using enamel matrix derivative. J. Dent., 2014, 42: 1535-1542.

[88]

Lv X, . Potential of an amelogenin based peptide in promoting reminerlization of initial enamel caries. Arch. Oral. Biol., 2015, 60: 1482-1487.

[89]

Chung HY, Li CC. Microstructure and nanomechanical properties of enamel remineralized with asparagine-serine-serine peptide. Mater. Sci. Eng. C Mater. Biol. Appl., 2013, 33: 969-973.

[90]

Kirkham J, . Self-assembling peptide scaffolds promote enamel remineralization. J. Dent. Res., 2007, 86: 426-430.

[91]

Suda S, . Application of the self- assembling peptide P11-4 for prevention of acidic erosion. Oper. Dent., 2018, 43: e166-e172.

[92]

Alkilzy M, Santamaria RM, Schmoeckel J, Splieth CH. Treatment of carious lesions using self-assembling peptides. Adv. Dent. Res., 2018, 29: 42-47.

[93]

Kind L, . Biomimetic remineralization of carious lesions by self-assembling peptide. J. Dent. Res., 2017, 96: 790-797.

[94]

Brunton PA, . Treatment of early caries lesions using biomimetic self-assembling peptides—a clinical safety trial. Br. Dent. J., 2013, 215: E6-E6.

[95]

Chen M, . Modulated regeneration of acid-etched human tooth enamel by a functionalized dendrimer that is an analog of amelogenin. Acta Biomater., 2014, 10: 4437-4446.

[96]

Langer R, Vacanti JP. Tissue engineering. Science, 1993, 260: 920-926.

[97]

Howard D, Buttery LD, Shakesheff KM, Roberts SJ. Tissue engineering: strategies, stem cells and scaffolds. J. Anat., 2008, 213: 66-72.

[98]

Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 2006, 367: 1241-1246.

[99]

Swinehart IT, Badylak SF. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev. Dyn., 2016, 245: 351-360.

[100]

Liu H, Yan X, Pandya M, Luan X, Diekwisch TGH. Daughters of the enamel organ: development, fate, and function of the stratum intermedium, stellate reticulum, and outer enamel epithelium. Stem. Cells Dev., 2016, 25: 1580-1590.

[101]

Sasaki T, Takagi M, Yanagisawa T. Structure and function of secretory ameloblasts in enamel formation. Ciba Found. Symp., 1997, 205: 32-46. ; discussion 46-50

[102]

Warshawsky H. The fine structure of secretory ameloblasts in rat incisors. Anat. Rec., 1968, 161: 211-229.

[103]

Pugach MK, . M180 amelogenin processed by MMP20 is sufficient for decussating murine enamel. J. Dent. Res., 2013, 92: 1118-1122.

[104]

Honda MJ, . A novel culture system for porcine odontogenic epithelial cells using a feeder layer. Arch. Oral. Biol., 2006, 51: 282-290.

[105]

Honda MJ, Shinmura Y, Shinohara Y. Enamel tissue engineering using subcultured enamel organ epithelial cells in combination with dental pulp cells. Cells Tissues Organs, 2009, 189: 261-267.

[106]

Matsumoto A, Harada H, Saito M, Taniguchi A. Induction of enamel matrix protein expression in an ameloblast cell line co-cultured with a mesenchymal cell line in vitro. In Vitro Cell. Dev. Biol. Anim., 2011, 47: 39-44.

[107]

Thesleff I. Epithelial-mesenchymal signalling regulating tooth morphogenesis. J. Cell Sci., 2003, 116: 1647-1648.

[108]

DenBesten PK, Gao C, Li W, Mathews CHE, Gruenert DC. Development and characterization of an SV40 immortalized porcine ameloblast‐like cell line. Eur. J. Oral. Sci., 1999, 107: 276-281.

[109]

Arakaki M, . Role of epithelial-stem cell interactions during dental cell differentiation. J. Biol. Chem., 2012, 287: 10590-10601.

[110]

Nakata A, . Establishment and characterization of a spontaneously immortalized mouse ameloblast-lineage cell line. Biochem. Biophys. Res. Commun., 2003, 308: 834-839.

[111]

Merametdjian L, . Expression of phosphate transporters in optimized cell culture models for dental cells biomineralization. Bull. Group Int. Rech. Sci. Stomatol. Odontol., 2016, 53: e16.

[112]

Kawano S, . Establishment of dental epithelial cell line (HAT-7) and the cell differentiation dependent on Notch signaling pathway. Connect Tissue Res., 2002, 43: 409-412.

[113]

Rácz R, . No change in bicarbonate transport but tight-junction formation is delayed by fluoride in a novel ameloblast model. Front. Physiol., 2017, 8: 940.

[114]

Bori E, . Evidence for bicarbonate secretion by ameloblasts in a novel cellular model. J. Dent. Res., 2016, 95: 588-596.

[115]

Nakamura T, . Globoside accelerates the differentiation of dental epithelial cells into ameloblasts. Int. J. Oral. Sci., 2016, 8: 205.

[116]

Le TQ, Zhang Y, Li W, Denbesten PK. The effect of LRAP on enamel organ epithelial cell differentiation. J. Dent. Res., 2007, 86: 1095-1099.

[117]

Huang Z, . Bioactive nanofibers instruct cells to proliferate and differentiate during enamel regeneration. J. Bone Miner. Res., 2008, 23: 1995-2006.

[118]

Sidaly R, . Hypoxia increases the expression of enamel genes and cytokines in an ameloblast‐derived cell line. Eur. J. Oral. Sci., 2015, 123: 335-340.

[119]

Chen L, Couwenhoven R, Hsu D, Luo W, Snead M. Maintenance of amelogenin gene expression by transformed epithelial cells of mouse enamel organ. Arch. Oral. Biol., 1992, 37: 771-778.

[120]

Sarkar J, . Comparison of two mouse ameloblast-like cell lines for enamel-specific gene expression. Front. Physiol., 2014, 5: 277.

[121]

Huang Z, . The role of bioactive nanofibers in enamel regeneration mediated through integrin signals acting upon C/EBPα and c-Jun. Biomaterials, 2013, 34: 3303-3314.

[122]

Endo T, Nadal-Ginard B. Reversal of myogenic terminal differentiation by SV40 large T antigen results in mitosis and apoptosis. J. Cell Sci., 1998, 111: 1081-1093.

[123]

Kim BH, . Dedifferentiation of conditionally immortalized hepatocytes with long-term in vitro passage. Exp. Mol. Med., 2000, 32: 29-37.

[124]

Shinmura Y, Tsuchiya S, Hata K, Honda MJ. Quiescent epithelial cell rests of Malassez can differentiate into ameloblast-like cells. J. Cell. Physiol., 2008, 217: 728-738.

[125]

Liu Y, . Skin epithelial cells as possible substitutes for ameloblasts during tooth regeneration. J. Tissue Eng. Regen. Med., 2013, 7: 934-943.

[126]

Wang B, . O24-induction of human keratinocytes into enamel-secreting ameloblasts. Bull. Group Int. Rech. Sci. Stomatol. Odontol., 2011, 49: 89.

[127]

Cai J, . Generation of tooth-like structures from integration-free human urine induced pluripotent stem cells. Cell Regen., 2013, 2: 6.

[128]

Chavez MG, . Isolation and culture of dental epithelial stem cells from the adult mouse incisor. J. Vis. Exp., 2014, 87: e51266.

[129]

Tummers, M. et al. Handbook of Stem Cells (eds Robert Lanza et al.) 265–271 (Academic Press, Cambridge, MA, 2004).

[130]

Keller L, Kuchler-Bopp S, Mendoza SA, Poliard A, Lesot H. Tooth engineering: searching for dental mesenchymal cells sources. Front. Physiol., 2011, 2: 7.

[131]

Ono M, . Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Sci. Rep., 2017, 7

[132]

Yamada M, . Chemically-defined organ culture of embryonic mouse tooth organs: morphogenesis, dentinogenesis and amelogenesis. J. Biol. Buccal., 1980, 8: 127-139.

[133]

Otsu K, . Differentiation of induced pluripotent stem cells into dental mesenchymal cells. Stem Cells Dev., 2012, 21: 1156-1164.

[134]

Fleming HS. Homologous and heterologous intraocular growth of transplanted tooth germs. J. Dent. Res., 1952, 31: 166-188.

[135]

Kollar EJ, Baird GR. Tissue interactions in embryonic mouse tooth germs. I. Reorganization of the dental epithelium during tooth-germ reconstruction. J. Embryol. Exp. Morphol., 1970, 24: 159-171.

[136]

Klein OD, . Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev. Cell., 2006, 11: 181-190.

[137]

Mikkola ML, Thesleff I. Ectodysplasin signaling in development. Cytokine Growth Factor Rev., 2003, 14: 211-224.

[138]

Fliniaux I, Mikkola ML, Lefebvre S, Thesleff I. Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Dev. Biol., 2008, 320: 60-71.

[139]

Järvinen, E., Shimomura-Kuroki, J., Balic, A., Jussila, M. & Thesleff, I. Mesenchymal Wnt/β-catenin signaling limits tooth number. Development, https://doi.org/10.1242/dev.158048 (2018).

[140]

Sagai T, . SHH signaling directed by two oral epithelium-specific enhancers controls tooth and oral development. Sci. Rep., 2017, 7

[141]

Ohazama A, . Primary cilia regulate Shh activity in the control of molar tooth number. Development, 2009, 136: 897-903.

[142]

Cho SW, . Interactions between Shh, Sostdc1 and Wnt signaling and a new feedback loop for spatial patterning of the teeth. Development, 2011, 138: 1807-1816.

[143]

Demir T, Ates U, Cehreli B, Cehreli ZC. Autotransplantation of a supernumerary incisor as a replacement for fused tooth: 24-month follow-up. Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 2008, 106: e1-e6.

[144]

Tirali RE, Sar C, Ates U, Kizilkaya M, Cehreli SB. Autotransplantation of a supernumerary tooth to replace a misaligned incisor with abnormal dimensions and morphology: 2-year follow-up. Case Rep. Dent., 2013, 2013: 146343.

[145]

Tsubura S, Kumakubo T. Supernumerary teeth are useful for immediate auto-tooth transplantation. J. Hard Tissue Biol., 2005, 14: 153-153.

Funding

National Institute for Dental and Craniofacial Research; DE018900

National Institute for Dental and Craniofacial Research; DE18900

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/