Meeting report: a close look at oral biofilms and microbiomes

Xin Xu , Feng Chen , Zhengwei Huang , Lvyan Ma , Li Chen , Yaping Pan , Jian Xu , Syngcuk Kim , Denis Kinane , Hyun Koo , Xuedong Zhou

International Journal of Oral Science ›› 2018, Vol. 10 ›› Issue (3) : 28

PDF
International Journal of Oral Science ›› 2018, Vol. 10 ›› Issue (3) : 28 DOI: 10.1038/s41368-018-0030-1
Comment

Meeting report: a close look at oral biofilms and microbiomes

Author information +
History +
PDF

Abstract

The “Biofilms, Microbiomes and Oral Diseases: Challenges and Future Perspectives” symposium jointly organized by Penn Dental Medicine and West China School of Stomatology was held on 30 September 2017 at Penn Wharton China Center (PWCC) in Beijing, China. The topics included the pathogenicity of oral biofilms, novel strategies for the control of biofilm-related diseases, oral microbiome and single-cell approaches, and the link between oral diseases and overall health. Researchers from a number of disciplines, representing institutions from China and Penn Dental Medicine, gathered to discuss advances in our understanding of biofilms, as well as future directions for the control of biofilm-related oral and systemic diseases.

Cite this article

Download citation ▾
Xin Xu, Feng Chen, Zhengwei Huang, Lvyan Ma, Li Chen, Yaping Pan, Jian Xu, Syngcuk Kim, Denis Kinane, Hyun Koo, Xuedong Zhou. Meeting report: a close look at oral biofilms and microbiomes. International Journal of Oral Science, 2018, 10(3): 28 DOI:10.1038/s41368-018-0030-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Flemming HC, . Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol., 2016, 14: 563-575.

[2]

Flemming HC, Wingender J. The biofilm matrix. Nat. Rev. Microbiol., 2010, 8: 623-633.

[3]

McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol., 2011, 10: 39-50.

[4]

Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol., 2004, 2: 95-108.

[5]

Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev., 2014, 78: 510-543.

[6]

Lamont RJ, Hajishengallis G. Polymicrobial synergy and dysbiosis in inflammatory disease. Trends Mol. Med., 2015, 21: 172-183.

[7]

Kaplan JB. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J. Dent. Res., 2010, 89: 205-218.

[8]

Kolenbrander PE, Palmer RJ Jr., Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell−cell distance. Nat. Rev. Microbiol., 2010, 8: 471-480.

[9]

Bowen WH, Burne RA, Wu H, Koo H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol., 2018, 26: 229-242.

[10]

Huse SM, Ye Y, Zhou Y, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE, 2012, 7: e34242.

[11]

Keijser BJ, . Pyrosequencing analysis of the oral microflora of healthy adults. J. Dent. Res., 2008, 87: 1016-1020.

[12]

Xu X, . Oral cavity contains distinct niches with dynamic microbial communities. Environ. Microbiol., 2015, 17: 699-710.

[13]

Nascimento MM, Zaura E, Mira A, Takahashi N, Ten Cate JM. Second era of OMICS in caries research: moving past the phase of disillusionment. J. Dent. Res., 2017, 96: 733-740.

[14]

Baker JL, Bor B, Agnello M, Shi W, He X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol., 2017, 25: 362-374.

[15]

Chen T, . The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database, 2010, 2010: baq013.

[16]

Marsh PD. Microbial ecology of dental plaque and its significance in health and disease. Adv. Dent. Res., 1994, 8: 263-271.

[17]

Marsh PD. Are dental diseases examples of ecological catastrophes?. Microbiology, 2003, 149(Pt 2): 279-294.

[18]

Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J. Dent. Res., 2011, 90: 294-303.

[19]

Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J. Clin. Periodontol., 2017, 44(Suppl 18): S12-S22.

[20]

Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol., 2010, 8: 481-490.

[21]

Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat. Rev. Endocrinol., 2011, 7: 738-748.

[22]

Gomes-Filho I. S., Passos J. S., Seixas da Cruz S. Respiratory disease and the role of oral bacteria. J. Oral Microbiol. 2010; 2: https://doi.org/10.3402/jom.v2i0.5811. Published online 2010 Dec 21. https://doi.org/10.3402/jom.v2i0.5811

[23]

Scannapieco FA. Role of oral bacteria in respiratory infection. J. Periodontol., 1999, 70: 793-802.

[24]

Scannapieco FA, Wang B, Shiau HJ. Oral bacteria and respiratory infection: effects on respiratory pathogen adhesion and epithelial cell proinflammatory cytokine production. Ann. Periodontol., 2001, 6: 78-86.

[25]

Pucar A, . Correlation between atherosclerosis and periodontal putative pathogenic bacterial infections in coronary and internal mammary arteries. J. Periodontol., 2007, 78: 677-682.

[26]

Atarashi K, . Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. Science, 2017, 358: 359-365.

[27]

Cao X. Intestinal inflammation induced by oral bacteria. Science, 2017, 358: 308-309.

[28]

Bassler BL. Small talk. Cell-to-cell communication in bacteria. Cell, 2002, 109: 421-424.

[29]

Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR. Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem. Rev., 2011, 111: 28-67.

[30]

He Z, . Role of the luxS gene in initial biofilm formation by Streptococcus mutans. J. Mol. Microbiol. Biotechnol., 2015, 25: 60-68.

[31]

Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nat. Rev. Microbiol., 2005, 3: 383-396.

[32]

Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science, 2006, 311: 1113-1116.

[33]

Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol., 2016, 14: 576-588.

[34]

He Z, . Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int. J. Antimicrob. Agents, 2012, 40: 30-35.

[35]

Wang Q, . luxS mutant regulation: quorum sensing impairment or methylation disorder?. Sensors, 2012, 12: 6155-6175.

[36]

Bowden GH. Microbiology of root surface caries in humans. J. Dent. Res., 1990, 69: 1205-1210.

[37]

Dame-Teixeira N, . Actinomyces spp. gene expression in root caries lesions. J. Oral. Microbiol., 2016, 8: 32383.

[38]

Falsetta ML, . Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect. Immun., 2014, 82: 1968-1981.

[39]

Hwang G, . Candida albicans mannans mediate Streptococcus mutans exoenzyme GtfB binding to modulate cross-kingdom biofilm development in vivo. PLoS Pathog., 2017, 13: e1006407.

[40]

Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat. Rev. Dis. Prim., 2017, 3: 17038.

[41]

Kulkarni C, Kinane DF. Host response in aggressive periodontitis. Periodontol. 2000., 2014, 65: 79-91.

[42]

Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol., 2015, 15: 30-44.

[43]

Inaba H, . Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol., 2014, 16: 131-145.

[44]

Katz J, Onate MD, Pauley KM, Bhattacharyya I, Cha S. Presence of Porphyromonas gingivalis in gingival squamous cell carcinoma. Int. J. Oral. Sci., 2011, 3: 209-215.

[45]

Sztukowska MN, . Porphyromonas gingivalis initiates a mesenchymal-like transition through ZEB1 in gingival epithelial cells. Cell. Microbiol., 2016, 18: 844-858.

[46]

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284: 1318-1322.

[47]

Davies D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Drug. Discov., 2003, 2: 114-122.

[48]

Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol., 2017, 15: 740-755.

[49]

Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358: 135-138.

[50]

Norris GE, Stillman TJ, Anderson BF, Baker EN. The three-dimensional structure of PNGase F, a glycosylasparaginase from Flavobacterium meningosepticum. Structure, 1994, 2: 1049-1059.

[51]

Xu J, . Emerging trends for microbiome analysis: from single-cell functional imaging to microbiome big data. Engineering, 2017, 3: 66-70.

[52]

Huang S, . Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J., 2014, 8: 1768-1780.

[53]

Teng F, . Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host Microbe, 2015, 18: 296-306.

[54]

Teng L, . Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome. Sci. Rep., 2016, 6

[55]

Wang Y, . Raman activated cell ejection for isolation of single cells. Anal. Chem., 2013, 85: 10697-10701.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/