Autonomic reinnervation and functional regeneration in autologous transplanted submandibular glands in patients with severe keratoconjunctivitis sicca

Xueming Zhang , Ningyan Yang , Xiaojing Liu , Jiazeng Su , Xin Cong , Liling Wu , Yan Zhang , Guangyan Yu

International Journal of Oral Science ›› 2018, Vol. 10 ›› Issue (2) : 14

PDF
International Journal of Oral Science ›› 2018, Vol. 10 ›› Issue (2) : 14 DOI: 10.1038/s41368-018-0014-1
Article

Autonomic reinnervation and functional regeneration in autologous transplanted submandibular glands in patients with severe keratoconjunctivitis sicca

Author information +
History +
PDF

Abstract

Regenerated nerves play a role in restoring the function of transplanted submandibular glands (SMGs) in treating dry eye syndrome. Dry eye syndrome, or keratoconjunctivitis sicca (KCS), is a leading cause of patients visiting ophthalmologists, and one effective treatment in severe cases is transplanting SMGs (to the temporal area). Autonomic nerves have an important function in maintaining the secretory function of salivary glands, and a team headed by Yan Zhang and Guang-Yan Yu at Peking University, China investigated whether those nerves underwent reinnervation (restoration of nerve control) with transplanted SMGs in KCS patients and in a rabbit model. The authors found that in both the patients and rabbit model, the transplanted SMGs were reinnervated and the regenerated nerves played a role in restoring the glands’ function. The findings offer new insights into managing SMG transplantation.

Cite this article

Download citation ▾
Xueming Zhang, Ningyan Yang, Xiaojing Liu, Jiazeng Su, Xin Cong, Liling Wu, Yan Zhang, Guangyan Yu. Autonomic reinnervation and functional regeneration in autologous transplanted submandibular glands in patients with severe keratoconjunctivitis sicca. International Journal of Oral Science, 2018, 10(2): 14 DOI:10.1038/s41368-018-0014-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Saedi Z, . Dry eye disease: present challenges in the management and future trends. Curr. Pharm. Des., 2016, 22: 4470-4490.

[2]

Yen JC, Hsu CA, Li YC, Hsu MH. The prevalence of dry eye syndrome’s and the likelihood to develop sjogren’s syndrome in taiwan: a population-based study. Int. J. Environ. Res. Public Health, 2015, 12: 7647-7655.

[3]

Su JZ, Cai ZG, Yu GY. Microvascular autologous submandibular gland transplantation in severe cases of keratoconjunctivitis sicca. Maxillofac. Plast. Reconstr. Surg., 2015, 37: 5.

[4]

Sieg P, . Microvascular submandibular gland transfer for severe cases of keratoconjunctivitis sicca. Plast. Reconstr. Surg., 2000, 106: 554-560.

[5]

Jacobsen HC, . Long-term results of autologous submandibular gland transfer for the surgical treatment of severe keratoconjunctivitis sicca. J. Craniomaxillofac. Surg., 2008, 36: 227-233.

[6]

Qin J, . Microvascular autologous transplantation of partial submandibular gland for severe keratoconjunctivitis sicca. Br. J. Ophthalmol., 2013, 97: 1123-1128.

[7]

Yu GY, . Microvascular autologous submandibular gland transfer in severe cases of keratoconjunctivitis sicca. Int. J. Oral. Maxillofac. Surg., 2004, 33: 235-239.

[8]

Su JZ, . Effect of computed tomographic venography on donor selection in submandibular gland transplantation in patients with severe dry eye. J. Craniomaxillofac. Surg., 2017, 45: 1692-1697.

[9]

Borrelli M, . Long-term follow-up after submandibular gland transplantation in severe dry eyes secondary to cicatrizing conjunctivitis. Am. J. Ophthalmol., 2010, 150: 894-904.

[10]

Geerling G, Sieg P, Bastian GO, Laqua H. Transplantation of the autologous submandibular gland for most severe cases of keratoconjunctivitis sicca. Ophthalmology, 1998, 105: 327-335.

[11]

Liu XJ, . Carbachol improves the secretion of transplanted submandibular glands during the latent period after microvascular autologous transplantation for severe keratoconjunctivitis sicca. Int. J. Oral. Maxillofac. Surg., 2016, 45: 1273-1279.

[12]

Su JZ, . Obstructive sialadenitis of a transplanted submandibular gland: chronic inflammation secondary to ductal obstruction. Br. J. Ophthalmol., 2014, 98: 1672-1677.

[13]

Wang Y, Wang Z, Yu GY, Tang ZG, Hu JA. Effect of capsaicin cream on the secretion of the submandibular and parotid gland in the general population with different chilli-eating habits. Chin. J. Dent. Res., 2016, 19: 89-93.

[14]

Su JZ, Liu XJ, Zhang L, Yu GY. Schirmer test in transplanted submandibular gland: influencing factors and a modified measurement method. Cornea, 2013, 32: 419-422.

[15]

Knox SM, . Parasympathetic stimulation improves epithelial organ regeneration. Nat. Commun., 2013, 4

[16]

Geerling G, . Innervation and secretory function of transplanted human submandibular salivary glands. Transplantation, 2008, 85: 135-140.

[17]

Persson-Sjogren S, Forsgren S, Taljedal IB. Peptides and other neuronal markers in transplanted pancreatic islets. Peptides, 2000, 21: 741-752.

[18]

Sakamoto I, . Experimental study on hepatic reinnervation after orthotopic liver transplantation in rats. J. Hepatol., 2002, 37: 814-823.

[19]

Juang JH, Kuo CH, Peng SJ, Tang SC. 3-D imaging reveals participation of donor islet schwann cells and pericytes in islet transplantation and graft neurovascular regeneration. EBioMedicine, 2015, 2: 109-119.

[20]

Awad M, . Early denervation and later reinnervation of the heart following cardiac transplantation: a review. J. Am. Heart Assoc., 2016, 5: e004070.

[21]

Byrne AB, . Insulin/IGF1 signaling inhibits age-dependent axon regeneration. Neuron, 2014, 81: 561-573.

[22]

Isomura ET, Yoshitomi K, Hamaguchi M, Kogo M. Saliva secretion stimulated by grafted nerve in submandibular gland allograft in dogs. Transplantation, 2007, 83: 759-763.

[23]

Fox RI, Stern M. Sjogren’s syndrome: mechanisms of pathogenesis involve interaction of immune and neurosecretory systems. Scand. J. Rheumatol. Suppl., 2002, 116: 3-13.

[24]

Anderson LC, Garrett JR, Proctor GB. Morphological effects of sympathetic nerve stimulation on rat parotid glands 3-4 weeks after the induction of streptozotocin diabetes. Arch. Oral. Biol., 1990, 35: 829-838.

[25]

Rufini S, . Stevens-Johnson syndrome and toxic epidermal necrolysis: an update on pharmacogenetics studies in drug-induced severe skin reaction. Pharmacogenomics, 2015, 16: 1989-2002.

[26]

Zhang SE, Su YX, Zheng GS, Liang YJ, Liao GQ. Reinnervated nerves contribute to the secretion function and regeneration of denervated submandibular glands in rabbits. Eur. J. Oral. Sci., 2014, 122: 372-381.

[27]

Kang JH, . Parasympathectomy induces morphological changes and alters gene-expression profiles in the rat submandibular gland. Arch. Oral. Biol., 2010, 55: 7-14.

[28]

Qi W, . Parasympathectomy increases resting salivary secretion in normal and irradiated submandibular glands of rats. Eur. J. Oral. Sci., 2017, 125: 110-118.

[29]

Ding C, . Hypersensitive mAChRs are involved in the epiphora of transplanted glands. J. Dent. Res., 2014, 93: 306-312.

[30]

Yang NY, . Muscarinic acetylcholine receptor-mediated tight junction opening is involved in epiphora in late phase of submandibular gland transplantation. J. Mol. Histol., 2017, 48: 99-111.

[31]

Ding C, . Decreased interaction between ZO-1 and occludin is involved in alteration of tight junctions in transplanted epiphora submandibular glands. J. Mol. Histol., 2017, 48: 225-234.

[32]

Dolly O. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins. Headache, 2003, 43(Suppl 1): S16-S24.

[33]

Kasravi N, Jog MS. Botulinum toxin in the treatment of lingual movement disorders. Mov. Disord., 2009, 24: 2199-2202.

[34]

Shan XF, Xu H, Cai ZG, Wu LL, Yu GY. Botulinum toxin A inhibits salivary secretion of rabbit submandibular gland. Int. J. Oral. Sci., 2013, 5: 217-223.

[35]

Xie S, . An experimental study on botulinum toxin type a for the treatment of excessive secretion after submandibular gland transplantation in rabbits. J. Ophthalmol., 2016, 2016: 7058537.

[36]

Liu XJ, Li M, Su JZ, Xie Z, Yu GY. The timing of acid-induced increase in saliva secretion in transplanted submandibular glands. Int. J. Oral. Maxillofac. Surg., 2015, 44: 1041-1047.

[37]

Karnovsky MJ, Roots LA. “direct-coloring” thiocholine method for cholinesterases. J. Histochem. Cytochem., 1964, 12: 219-221.

[38]

Lopez-Jornet P, Camacho-Alonso F, Bermejo-Fenoll A. A simple test for salivary gland hypofunction using Oral Schirmer’s test. J. Oral. Pathol. Med., 2006, 35: 244-248.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/