RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement

Chia-Ying Yang , Hyeran Helen Jeon , Ahmed Alshabab , Yu Jin Lee , Chun-Hsi Chung , Dana T. Graves

International Journal of Oral Science ›› 2018, Vol. 10 ›› Issue (1) : 3

PDF
International Journal of Oral Science ›› 2018, Vol. 10 ›› Issue (1) : 3 DOI: 10.1038/s41368-017-0004-8
Article

RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement

Author information +
History +
PDF

Abstract

Cells and tissues have been identified that produce a signaling molecule essential for bone remodeling in orthodontic patients. Directional mechanical force, when applied to teeth, instigates changes to remodel the bone around the tooth. Researchers from the University of Pennsylvania School of Dental Medicine in Philadelphia, led by Dana Graves, genetically altered mice to remove ‘RANKL’, a protein thought to be a mediator in the breakdown of bone. The team found that the immune cells responsible for producing RANKL are primarily found in the tissue connecting tooth roots to the ridges of bone containing the tooth sockets and the protective cells that line the bones. Removing RANKL impaired the ability of the teeth to move in response to external directional force. This study provides insights into the relationship between RANKL production and orthodontic tooth movement.

Cite this article

Download citation ▾
Chia-Ying Yang, Hyeran Helen Jeon, Ahmed Alshabab, Yu Jin Lee, Chun-Hsi Chung, Dana T. Graves. RANKL deletion in periodontal ligament and bone lining cells blocks orthodontic tooth movement. International Journal of Oral Science, 2018, 10(1): 3 DOI:10.1038/s41368-017-0004-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Riancho JA, Delgado-Calle J. [Osteoblast-osteoclast interaction mechanisms]. Reumatol. Clin., 2011, 7: S1-S4.

[2]

Tanaka Y, Nakayamada S, Okada Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr. Drug. Targets Inflamm. Allergy, 2005, 4: 325-328.

[3]

Hadjidakis DJ, Androulakis II. Bone remodeling. Ann. N. Y. Acad. Sci., 2006, 1092: 385-396.

[4]

Murshid SA. The role of osteocytes during experimental orthodontic tooth movement: a review. Arch. Oral. Biol., 2017, 73: 25-33.

[5]

Teitelbaum SL. Bone resorption by osteoclasts. Science, 2000, 289: 1504-1508.

[6]

Yasuda H, . Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl Acad. Sci. USA., 1998, 95: 3597-3602.

[7]

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature, 2003, 423: 337-342.

[8]

O'Brien CA. Control of RANKL gene expression. Bone, 2010, 46: 911-919.

[9]

Meikle MC. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur. J. Orthod., 2006, 28: 221-240.

[10]

Wang XJ, . Role of TGF beta-mediated inflammation in cutaneous wound healing. J. Investig. Dermatol. Symp. Proc., 2006, 11: 112-117.

[11]

Walker JB, Buring SM. NSAID impairment of orthodontic tooth movement. Ann. Pharmacother., 2001, 35: 113-115.

[12]

Mabuchi R, Matsuzaka K, Shimono M. Cell proliferation and cell death in periodontal ligaments during orthodontic tooth movement. J. Periodontal Res., 2002, 37: 118-124.

[13]

Pavlin D, Gluhak-Heinrich J. Effect of mechanical loading on periodontal cells. Crit. Rev. Oral. Biol. Med., 2001, 12: 414-424.

[14]

Krishnan V, Davidovitch Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofac. Orthop., 2006, 129: 469 e461-432.

[15]

Mitchell DL, West JD. Attempted orthodontic movement in the presence of suspected ankylosis. Am. J. Orthod., 1975, 68: 404-411.

[16]

Lekic P, McCulloch CA. Periodontal ligament cell population: the central role of fibroblasts in creating a unique tissue. Anat. Rec., 1996, 245: 327-341.

[17]

Diercke K, . Compression-dependent up-regulation of ephrin-A2 in PDL fibroblasts attenuates osteogenesis. J. Dent. Res., 2011, 90: 1108-1115.

[18]

Chen YJ, . Activation of focal adhesion kinase induces extracellular signal-regulated kinase-mediated osteogenesis in tensile force-subjected periodontal ligament fibroblasts but not in osteoblasts. J. Bone Miner. Metab., 2014, 32: 671-682.

[19]

Sen S, . Compression induces Ephrin-A2 in PDL fibroblasts via c-fos. J. Dent. Res., 2015, 94: 464-472.

[20]

Cho A, Haruyama N, Kulkarni AB. Generation of transgenic mice. Curr. Protoc. Cell. Biol., 2009, 19: 19 11. Chapter Unit

[21]

Elefteriou F, Yang X. Genetic mouse models for bone studies–strengths and limitations. Bone, 2011, 49: 1242-1254.

[22]

Feil S, Valtcheva N, Feil R. Inducible Cre mice. Methods Mol. Biol., 2009, 530: 343-363.

[23]

Ouyang Z, . Prx1 and 3.2kb Col1a1 promoters target distinct bone cell populations in transgenic mice. Bone, 2013, S8756-3282: 00426-00432.

[24]

Rossert J, Eberspaecher H, de Crombrugghe B. Separate cis-acting DNA elements of the mouse pro-alpha 1(I) collagen promoter direct expression of reporter genes to different type I collagen-producing cells in transgenic mice. J. Cell. Biol., 1995, 129: 1421-1432.

[25]

Huang H, Williams RC, Kyrkanides S. Accelerated orthodontic tooth movement: molecular mechanisms. Am. J. Orthod. Dentofac. Orthop., 2014, 146: 620-632.

[26]

Olson C, . Orthodontic tooth movement causes decreased promoter expression of collagen type 1, bone sialoprotein and alpha-smooth muscle actin in the periodontal ligament. Orthod. Craniofac. Res., 2012, 15: 52-61.

[27]

Sokos D, Everts V, de Vries TJ. Role of periodontal ligament fibroblasts in osteoclastogenesis: a review. J. Periodontal Res., 2015, 50: 152-159.

[28]

Beertsen W. Migration of fibroblasts in the periodontal ligament of the mouse incisor as revealed by autoradiography. Arch. Oral. Biol., 1975, 20: 659-666.

[29]

Cho MI, Garant PR. Development and general structure of the periodontium. Periodontol., 2000, 24: 9-27.

[30]

Chiba M, Mitani H. Cytoskeletal changes and the system of regulation of alkaline phosphatase activity in human periodontal ligament cells induced by mechanical stress. Cell Biochem. Funct., 2004, 22: 249-256.

[31]

Yamashita Y, Sato M, Noguchi T. Alkaline phosphatase in the periodontal ligament of the rabbit and macaque monkey. Arch. Oral. Biol., 1987, 32: 677-678.

[32]

Alves LB, . Expression of osteoblastic phenotype in periodontal ligament fibroblasts cultured in three-dimensional collagen gel. J. Appl. Oral. Sci., 2015, 23: 206-214.

[33]

Diercke K, . Strain-dependent up-regulation of ephrin-B2 protein in periodontal ligament fibroblasts contributes to osteogenesis during tooth movement. J. Biol. Chem., 2011, 286: 37651-37664.

[34]

Choi Y, . Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8(+) T cells. Eur. J. Immunol., 2001, 31: 2179-2188.

[35]

Harada Y, . Effect of adoptive transfer of antigen-specific B cells on periodontal bone resorption. J. Periodontal Res., 2006, 41: 101-107.

[36]

Teng YT, . Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J. Clin. Invest., 2000, 106: R59-R67.

[37]

Baker PJ, . T-cell contributions to alveolar bone loss in response to oral infection with Porphyromonas gingivalis. Acta Odontol. Scand., 2001, 59: 222-225.

[38]

Davidovitch Z, . Neurotransmitters, cytokines, and the control of alveolar bone remodeling in orthodontics. Dent. Clin. North. Am., 1988, 32: 411-435.

[39]

Li Y, . Expression of osteoclastogenesis inducers in a tissue model of periodontal ligament under compression. J. Dent. Res., 2011, 90: 115-120.

[40]

Nishijima Y, . Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod. Craniofac. Res., 2006, 9: 63-70.

[41]

Kanzaki H, . Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement. Gene Ther., 2006, 13: 678-685.

[42]

Kanzaki H, . Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J. Dent. Res., 2004, 83: 920-925.

[43]

Ren Y, . Cytokine profiles in crevicular fluid during orthodontic tooth movement of short and long durations. J. Periodontol., 2007, 78: 453-458.

[44]

Li J, . Altered distribution of HMGB1 in the periodontal ligament of periostin-deficient mice subjected to Waldo's orthodontic tooth movement. J. Mol. Histol., 2015, 46: 303-311.

[45]

Taddei SR, . Experimental model of tooth movement in mice: a standardized protocol for studying bone remodeling under compression and tensile strains. J. Biomech., 2012, 45: 2729-2735.

[46]

Yadav S, . The effect of low-frequency mechanical vibration on retention in an orthodontic relapse model. Eur. J. Orthod., 2016, 38: 44-50.

[47]

Yamaguchi M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod. Craniofac. Res., 2009, 12: 113-119.

[48]

Hemingway F, . RANKL-independent human osteoclast formation with APRIL, BAFF, NGF, IGF I and IGF II. Bone, 2011, 48: 938-944.

[49]

Kim HR, . Reciprocal activation of CD4+ T cells and synovial fibroblasts by stromal cell-derived factor 1 promotes RANKL expression and osteoclastogenesis in rheumatoid arthritis. Arthritis Rheumatol., 2014, 66: 538-548.

[50]

Kamiya N, . Disruption of BMP signaling in osteoblasts through type IA receptor (BMPRIA) increases bone mass. J. Bone Miner. Res., 2008, 23: 2007-2017.

[51]

Xiong J, . Matrix-embedded cells control osteoclast formation. Nat. Med., 2011, 17: 1235-1241.

[52]

Anastassiadis K, . A practical summary of site-specific recombination, conditional mutagenesis, and tamoxifen induction of CreERT2. Methods Enzymol., 2010, 477: 109-123.

[53]

Vasioukhin V, . The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl Acad. Sci. USA., 1999, 96: 8551-8556.

[54]

Yadav S, . The effect of mechanical vibration on orthodontically induced root resorption. Angle Orthod., 2016, 86: 740-745.

[55]

Andrade I Jr., . The role of tumor necrosis factor receptor type 1 in orthodontic tooth movement. J. Dent. Res., 2007, 86: 1089-1094.

[56]

Andrade I Jr., . CCR5 down-regulates osteoclast function in orthodontic tooth movement. J. Dent. Res., 2009, 88: 1037-1041.

[57]

Shi J, . Antibiotic administration alleviates the aggravating effect of orthodontic force on ligature-induced experimental periodontitis bone loss in mice. J. Periodontal Res., 2017, 52: 725-733.

AI Summary AI Mindmap
PDF

165

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/