Validation of a novel imaging approach using multi-slice CT and cone-beam CT to follow-up on condylar remodeling after bimaxillary surgery

Laura Ferreira Pinheiro Nicolielo , Jeroen Van Dessel , Eman Shaheen , Carolina Letelier , Marina Codari , Constantinus Politis , Ivo Lambrichts , Reinhilde Jacobs

International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (3) : 139 -144.

PDF
International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (3) : 139 -144. DOI: 10.1038/ijos.2017.22
Article

Validation of a novel imaging approach using multi-slice CT and cone-beam CT to follow-up on condylar remodeling after bimaxillary surgery

Author information +
History +
PDF

Abstract

Images of the jaw joint in 3D from pre- and post-operative CT scans can help doctors assess bone loss after jaw surgery. Laura Ferreira Pinheiro Nicolielo of UZ Leuven in Belgium and colleagues rendered 3D images from multi-slice and cone-beam computed tomography scans taken from 20 patients before and after jaw surgery. An algorithm was used to analyze the images and calculate bone loss in the condyles, the rounded tips at the back of the jaw that form part of the temperomandibular joint (TMJ). The condyles in all but one patient showed up to 46% bone loss. Jaw surgery can change the location of the TMJ, leading to stress on the condyles and joint dysfunction. This method could help oral surgeons assess condylar bone loss after surgery to optimize patient treatment.

Keywords

condylar resorption / cone-beam computed tomography / mandibular condyle / multi-slice computed tomography / three-dimensional imaging

Cite this article

Download citation ▾
Laura Ferreira Pinheiro Nicolielo, Jeroen Van Dessel, Eman Shaheen, Carolina Letelier, Marina Codari, Constantinus Politis, Ivo Lambrichts, Reinhilde Jacobs. Validation of a novel imaging approach using multi-slice CT and cone-beam CT to follow-up on condylar remodeling after bimaxillary surgery. International Journal of Oral Science, 2017, 9(3): 139-144 DOI:10.1038/ijos.2017.22

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jung HD, Kim SY, Park HS. Orthognathic surgery and temporomandibular joint symptoms. Maxillofac Plast Reconstr Surg, 2015, 37(1): 14.

[2]

Geiger D, Bae WC, Statum S. Quantitative 3D ultrashort time-to-echo (UTE) MRI and micro-CT (μCT) evaluation of the temporomandibular joint (TMJ) condylar morphology. Skeletal Radiol, 2014, 43(1): 19-25.

[3]

Van Dessel J, Nicolielo LF, Huang Y. Quantification of bone quality using different cone beam computed tomography devices: accuracy assessment for edentulous human mandibles. Eur J Oral Implantol, 2016, 9(4): 411-424.

[4]

Van Dessel J, Nicolielo LF, Huang Y. Accuracy and reliability of different cone beam computed tomography (CBCT) devices for structural analysis of alveolar bone in comparison with multislice CT and micro-CT. Eur J Oral Implantol, 2017, 10(1): 95-105.

[5]

Katsumata A, Nojiri M, Fujishita M. Condylar head remodeling following mandibular setback osteotomy for prognathism: a comparative study of different imaging modalities. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 101(4): 505-514.

[6]

Ha MH, Kim YI, Park SB. Cone-beam computed tomographic evaluation of the condylar remodeling occurring after mandibular set-back by bilateral sagittal split ramus osteotomy and rigid fixation. Korean J Orthod, 2013, 43(6): 263-270.

[7]

Park SB, Yang YM, Kim YI. Effect of bimaxillary surgery on adaptive condylar head remodeling: metric analysis and image interpretation using cone-beam computed tomography volume superimposition. J Oral Maxillofac Surg, 2012, 70(8): 1951-1959.

[8]

Kim YI, Jung YH, Cho BH. The assessment of the short- and long-term changes in the condylar position following sagittal split ramus osteotomy (SSRO) with rigid fixation. J Oral Rehabil, 2010, 37(4): 262-270.

[9]

Chen S, Lei J, Wang X. Short- and long-term changes of condylar position after bilateral sagittal split ramus osteotomy for mandibular advancement in combination with Le Fort I osteotomy evaluated by cone-beam computed tomography. J Oral Maxillofac Surg, 2013, 71(11): 1956-1966.

[10]

Xi T, Van Loon B, Fudalej P. Validation of a novel semi-automated method for three-dimensional surface rendering of condyles using cone beam computed tomography data. Int J Oral Maxillofac Surg, 2013, 42(8): 1023-1029.

[11]

Cevidanes LH, Hajati AK, Paniagua B. Quantification of condylar resorption in temporomandibular joint osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010, 110(1): 110-117.

[12]

Goncalves JR, Wolford LM, Cassano DS. Temporomandibular joint condylar changes following maxillomandibular advancement and articular disc repositioning. J Oral Maxillofac Surg, 2013, 71(10): 1759.e1-1759.e15.

[13]

Schilling J, Gomes LC, Benavides E. Regional 3D superimposition to assess temporomandibular joint condylar morphology. Dentomaxillofac Radiol, 2014, 43(1): 20130273.

[14]

Xi T, Schreurs R, Van Loon B. 3D analysis of condylar remodelling and skeletal relapse following bilateral sagittal split advancement osteotomies. J Craniomaxillofac Surg, 2015, 43(4): 462-468.

[15]

Xi T, Schreurs R, Heerink WJ. A novel region-growing based semi-automatic segmentation protocol for three-dimensional condylar reconstruction using cone beam computed tomography (CBCT). PLoS One, 2014, 9(11): e111126.

[16]

Swennen GR, Mommaerts MY, Abeloos J. The use of a wax bite wafer and a double computed tomography scan procedure to obtain a three-dimensional augmented virtual skull model. J Craniofac Surg, 2007, 18(3): 533-539.

[17]

Maes F, Collignon A, Vandermeulen D. Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging, 1997, 16(2): 187-198.

[18]

Faul F, Erdfelder E, Buchner A. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods, 2009, 41(4): 1149-1160.

[19]

Hoppenreijs TJ, Freihofer HP, Stoelinga PJ. Condylar remodelling and resorption after Le Fort I and bimaxillary osteotomies in patients with anterior open bite. A clinical and radiological study. Int J Oral Maxillofac Surg, 1998, 27(2): 81-91.

[20]

Borstlap WA, Stoelinga PJ, Hoppenreijs TJ. Stabilisation of sagittal split advancement osteotomies with miniplates: a prospective, multicentre study with two-year follow-up. Part I. Clinical parameters. Int J Oral Maxillofac Surg, 2004, 33(5): 433-441.

[21]

De Clercq CA, Neyt LF, Mommaerts MY. Condylar resorption in orthognathic surgery: a retrospective study. Int J Adult Orthodon Orthognath Surg, 1994, 9(3): 233-240.

[22]

Wolford LM. Idiopathic condylar resorption of the temporomandibular joint in teenage girls (cheerleaders syndrome). Proc (Bayl Univ Med Cent), 2001, 14(3): 246-252.

[23]

Vidra MA, Rozema FR, Kostense PJ. Observer consistency in radiographic assessment of condylar resorption. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 93(4): 399-403.

[24]

Hoppenreijs TJ, Stoelinga PJ, Grace KL. Long-term evaluation of patients with progressive condylar resorption following orthognathic surgery. Int J Oral Maxillofac Surg, 1999, 28(6): 411-418.

[25]

Plooij JM, Naphausen MT, Maal TJ. 3D evaluation of the lingual fracture line after a bilateral sagittal split osteotomy of the mandible. Int J Oral Maxillofac Surg, 2009, 38(12): 1244-1249.

[26]

Bayram M, Kayipmaz S, Sezgin OS. Volumetric analysis of the mandibular condyle using cone beam computed tomography. Eur J Radio l, 2012, 81(8): 1812-1816.

[27]

Loubele M, Maes F, Schutyser F. Assessment of bone segmentation quality of cone-beam CT versus multislice spiral CT: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2006, 102(2): 225-234.

[28]

Van Dessel J, Huang Y, Depypere M. A comparative evaluation of cone beam CT and micro-CT on trabecular bone structures in the human mandible. Dentomaxillofac Radiol, 2013, 42(8): 20130145.

[29]

Nackaerts O, Depypere M, Zhang GZ. Segmentation of trabecular jaw bone on cone beam CT datasets. Clin Implant Dent Relat Res, 2015, 17(6): 1082-1091.

[30]

Chen S, Liu XJ, Li ZL. [Three-dimensional evaluation of condylar morphology remodeling after orthognathic surgery in mandibular retrognathism by cone-beam computed tomography]. Beijing Da Xue Xue Bao, 2015, 47(4): 703-707.

[31]

Stratis A, Zhang G, Jacobs R. Head CBCT vs head MSCT imaging; comparing organ doses and radiation risks for a cohort of orthognathic patients. Phys Med, 2016, 32(Suppl 3): 210.

[32]

Hofmann E, Schmid M, Lell M. Cone beam computed tomography and low-dose multislice computed tomography in orthodontics and dentistry: a comparative evaluation on image quality and radiation exposure. J Orofac Orthop, 2014, 75(5): 384-398.

[33]

Almukhtar A, Ju XY, Khambay B. Comparison of the accuracy of voxel based registration and surface based registration for 3D assessment of surgical change following orthognathic surgery. PLoS One, 2014, 9(4): e93402.

[34]

Ruellas AC, Yatabe MS, Souki BQ. 3D mandibular superimposition: comparison of regions of reference for Voxel-Based registration. PLoS ONE, 2016, 11(6): e0157625.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/