Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study

Yi Liu , Yi Zhou , Tao Jiang , You-De Liang , Zhen Zhang , Yi-Ning Wang

International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (3) : 133 -138.

PDF
International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (3) : 133 -138. DOI: 10.1038/ijos.2017.13
Article

Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study

Author information +
History +
PDF

Abstract

Coating titanium implants with calcium carbonate (CC) may improve their integration with the surrounding bone tissue. Yining Wang of China’s Wuhan University and colleagues tested a new method to prepare CC coatings for titanium implants. CC is resorbable, that is, it is absorbed by the body after a period of time. Current implants coated with non-resorbable materials show decreasing success rates several years after implantation. CC-coated and control implants were embedded in the legs of rabbits and extracted one, two, four, eight and 12 weeks after surgery. The CC-coated implants integrated earlier with the surrounding bone tissue than the controls. The method needs improvement due to incomplete coating of the titanium surface but the team believes CC-coating of titanium implants could reduce healing times and lead to higher implant success rates.

Keywords

calcium carbonate / histomorphometry / in vivo / osseointegration / titanium

Cite this article

Download citation ▾
Yi Liu, Yi Zhou, Tao Jiang, You-De Liang, Zhen Zhang, Yi-Ning Wang. Evaluation of the osseointegration of dental implants coated with calcium carbonate: an animal study. International Journal of Oral Science, 2017, 9(3): 133-138 DOI:10.1038/ijos.2017.13

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nebe JB, Mueller L, Luethen F. Osteoblast response to biomimetically altered titanium surfaces. Acta Biomater, 2008, 4(6): 1985-1995.

[2]

Bacchelli B, Giavaresi G, Franchi MA. Influence of a zirconia sandblasting treated surface on peri-implant bone healing: an experimental study in sheep. Acta Biomater, 2009, 5(6): 2246-2257.

[3]

Park JW, Suh JY, Chung HJ. Effects of calcium ion incorporation on osteoblast gene expression in MC3T3-E1 cells cultured on microstructured titanium surfaces. J Biomed Mater Res A, 2008, 86(1): 117-126.

[4]

Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24(13): 2161-2175.

[5]

Langhoff JD, Voelter K, Scharnweber D. Comparison of chemically and pharmaceutically modified Titanium and zirconia implant surfaces in dentistry: a study in sheep. Int J Oral Maxillofac Surg, 2008, 37(12): 1125-1132.

[6]

Wheeler SL. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants, 1996, 11(3): 340-350.

[7]

Artzi Z, Carmeli G, Kozlovsky A. A distinguishable observation between survival and success rate outcome of hydroxyapatite-coated implants in 5–10 years in function. Clin Oral Implants Res, 2006, 17(1): 85-93.

[8]

Cook SD, Kay JF, Thomas KA. Interface mechanics and histology of titanium and hydroxylapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Implants, 1987, 2(1): 15-22.

[9]

Salvi GE, Lang NP. Changing paradigms in implant dentistry. Crit Rev Oral Biol Med, 2001, 12(3): 262-272.

[10]

Lemons JE. Hydroxyapatite coatings. Clin Orthop Relat Res, 1988, 235: 220-223.

[11]

Barrère F, van der Valk CM, Dalmeijer RA. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J Biomed Mater Res A, 2003, 64(2): 378-387.

[12]

Oh S, Tobin E, Yang YZ. In vivo evaluation of hydroxyapatite coatings of different crystallinities. Int J Oral Maxillofac Implants, 2005, 20(5): 726-731.

[13]

Yamamoto H, Shibata Y, Tachikawa T. In vivo performance of two different hydroxyapatite coatings on titanium prepared by discharging in electrolytes. J Biomed Mater Res B Appl Biomater, 2006, 78(1): 211-214.

[14]

Le Guéhennec L, Soueidan A, Layrolle P. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater, 2007, 23(7): 844-854.

[15]

Stadlinger B, Pilling E, Huhle M. Evaluation of osseointegration of dental implants coated with collagen,chondroitin sulphate and BMP-4:an animal study. Int J Oral Maxillofac Surg, 2008, 37(1): 54-59.

[16]

Piattelli A, Podda G, Scarano A. Clinical and histological results in alveolar ridge enlargement using coralline calcium carbonate. Biomaterials, 1997, 18(8): 623-627.

[17]

Yukna RA, Yukna CN. A 5-year follow-up of 16 patients treated with coralline calcium carbonate (Biocoral) bone replacement grafts in infrabony defects. J Clin Periodontol, 1998, 25(12): 1036-1040.

[18]

Brečević L, Nielsen AE. Solubility of amorphous calcium carbonate. J Cryst Growth, 1989, 98(3): 504-510.

[19]

Combes C, Bareille R, Rey C. Calcium carbonate-calcium phosphate mixed cement compositions for bone reconstruction. J Biomed Mater Res A, 2006, 79(2): 318-328.

[20]

Ripamonti U, Crooks J, Khoah L. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials, 2009, 30(7): 1428-1439.

[21]

Fricain JC, Bareille R, Ulysse F. Evaluation of proliferation and protein expression of human bone marrow cells cultured on coral crystallized in the aragonite or calcite form. J Biomed Mater Res, 1998, 42(1): 96-102.

[22]

Xu XR, Han JT, Cho K. Formation of amorphous calcium carbonate thin films and their role in biomineralization. Chem Mater, 2004, 16(9): 1740-1746.

[23]

Liu Y, Jiang T, Zhou Y. Evaluation of the attachment, proliferation, and differentiation of osteoblast on a calcium carbonate coating on titanium surface. Mater Sci Eng C, 2011, 31(5): 1055-1061.

[24]

Ersanli S, Karabuda C, Beck F. Resonance frequency analysis of one-stage dental implant stability during the osseointegration period. J Periodontol, 2005, 76(7): 1066-1071.

[25]

Nedir R, Bischof M, Szmukler-Moncler S. Predicting osseointegration by means of implant primary stability. Clin Oral Implants Res, 2004, 15(5): 520-528.

[26]

Xue WC, Liu XY, Zheng XB. In vivo evaluation of plasma-sprayed titanium coating after alkali modification. Biomaterials, 2005, 26(16): 3029-3037.

[27]

Nayab SN, Jones FH, Olsen I. Human alveolar bone cell adhesion and growth on ion-implanted titanium. J Biomed Mater Res A, 2004, 69(4): 651-657.

[28]

Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials, 1991, 12(6): 593-596.

[29]

Schliephake H, Aref A, Scharnweber D. Effect of modifications of dual acid-etched implant surfaces on periimplant bone formation. Part II: calcium phosphate coatings. Clin Oral Implants Res, 2009, 20(1): 38-44.

[30]

Zhao G, Schwartz Z, Wieland M. High surface energy enhances cell response to Titanium substrate microstructure. J Biomed Mater Res A, 2005, 74(1): 49-58.

[31]

Zhou Y, Jiang T, Qian MB. Roles of bone scintigraphy and resonance frequency analysis in evaluating osseointegration of endosseous implant. Biomaterials, 2008, 29(4): 461-474.

[32]

Sammons RL, Lumbikanonda N, Gross M. Comparison of osteoblast spreading on microstructured dental implant surfaces and cell behaviour in an explant model of osseointegration. Clin Oral Implants Res, 2005, 16(6): 657-666.

[33]

Hernández-Hernández A, Rodríguez-Navarro AB, Gómez-Morales J. Influence of model globular proteins with different isoelectric points on the precipitation of calcium carbonate. Cryst Growth Des, 2008, 8(5): 1495-1502.

[34]

Iafisco M, Morales JG, Hernández-Hernández MA. Biomimetic carbonate-hydroxyapatite nanocrystals prepared by vapor diffusion. Adv Eng Mater, 2010, 12(7): B218-B223.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/