A robust methodology for the quantitative assessment of the rat jawbone microstructure

Marissa Chatterjee , Fernanda Faot , Cassia Correa , Joke Duyck , Ignace Naert , Katleen Vandamme

International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (2) : 87 -94.

PDF
International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (2) : 87 -94. DOI: 10.1038/ijos.2017.11
Article

A robust methodology for the quantitative assessment of the rat jawbone microstructure

Author information +
History +
PDF

Abstract

A standardized approach for imaging the bones of the rodent jaw enables consistent collection of accurate structural data across specimens. Micro-computed tomography (micro-CT) is a widely used and reliable technique for visualizing skeletal structure, but its performance and its reproducibility is lower in the more heterogeneous bone that forms the upper and lower jawbones. To address this need, researchers led by Katleen Vandamme of the University of Leuven in Belgium have devised a protocol for the quantitative micro-CT analysis of rat jawbones. They identified multiple regions of interest in each bone that can be readily compared, and which are most likely to be structurally affected over the course of an experimental intervention. This protocol broadens the applicability of micro-CT for the analysis of rodent anatomy, and the authors propose that their approach should be similarly extensible to other species.

Keywords

bone microarchitecture / jawbone / methodology / micro-computed tomography / rat

Cite this article

Download citation ▾
Marissa Chatterjee, Fernanda Faot, Cassia Correa, Joke Duyck, Ignace Naert, Katleen Vandamme. A robust methodology for the quantitative assessment of the rat jawbone microstructure. International Journal of Oral Science, 2017, 9(2): 87-94 DOI:10.1038/ijos.2017.11

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bouxsein ML, Boyd SK, Christiansen BA. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res, 2010, 25(7): 1468-1486.

[2]

Parfitt AM, Drezner MK, Glorieux FH. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res, 1987, 2(6): 595-610.

[3]

Gielkens PF, Schortinghuis J, De Jong JR. A comparison of micro-CT, microradiography and histomorphometry in bone research. Arch Oral Biol, 2008, 53(6): 558-566.

[4]

Müller R, Van Campenhout H, Van Damme B. Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone, 1998, 23(1): 59-66.

[5]

Rhee Y, Hur JH, Won YY. Assessment of bone quality using finite element analysis based upon micro-CT images. Clin Orthop Surg, 2009, 1(1): 40-47.

[6]

Müller R. Hierarchical microimaging of bone structure and function. Nat Rev Rheumatol, 2009, 5(7): 373-381.

[7]

Feldkamp LA, Goldstein SA, Parfitt AM. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res, 1989, 4(1): 3-11.

[8]

Kallai I, Mizrahi O, Tawackoli W. Microcomputed tomography-based structural analysis of various bone tissue regeneration models. Nat Protoc, 2011, 6(1): 105-110.

[9]

Dai QG, Zhang P, Wu YQ. Ovariectomy induces osteoporosis in the maxillary alveolar bone: an in vivo micro-CT and histomorphometric analysis in rats. Oral Dis, 2014, 20(5): 514-520.

[10]

Kuroshima S, Kovacic BL, Kozloff KM. Intra-oral PTH administration promotes tooth extraction socket healing. J Dent Res, 2013, 92(6): 553-559.

[11]

Xu YQ, Zhao TM, Xu WJ. Periodontal microstructure change and tooth movement pattern under different force magnitudes in ovariectomized rats: an in-vivo microcomputed tomography study. Am J Orthod Dentofacial Orthop, 2013, 143(6): 828-836.

[12]

Abtahi J, Agholme F, Sandberg O. Effect of local vs. systemic bisphosphonate delivery on dental implant fixation in a model of osteonecrosis of the jaw. J Dent Res, 2013, 92(3): 279-283.

[13]

Alikhani M, Khoo E, Alyami B. Osteogenic effect of high-frequency acceleration on alveolar bone. J Dent Res, 2012, 91(4): 413-419.

[14]

Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med, 2011, 61(1): 76-85.

[15]

Kosugi K, Yonezu H, Kawashima S. A longitudinal study of the effect of experimental osteoporosis on bone trabecular structure in the rat mandibular condyle. Cranio, 2013, 31(2): 140-150.

[16]

Mijares D, Kulkarni A, Lewis K. Oral bone loss induced by mineral deficiency in a rat model: effect of a synthetic bone mineral (SBM) preparation. Arch Oral Biol, 2012, 57(9): 1264-1273.

[17]

Ravosa MJ, Klopp EB, Pinchoff J. Plasticity of mandibular biomineralization in myostatin-deficient mice. J Morphol, 2007, 268(3): 275-282.

[18]

Shimizu Y, Ishida T, Hosomichi J. Soft diet causes greater alveolar osteopenia in the mandible than in the maxilla. Arch Oral Biol, 2013, 58(8): 907-911.

[19]

Tanaka M, Miyazawa K, Tabuchi M. Effect of reveromycin a on experimental tooth movement in OPG-/- mice. J Dent Res, 2012, 91(8): 771-776.

[20]

Chang PC, Chung MC, Wang YP. Patterns of diabetic periodontal wound repair: a study using micro-computed tomography and immunohistochemistry. J Periodontol, 2012, 83(5): 644-652.

[21]

Faot F, Chatterjee M, de Camargos GV. Micro-CT analysis of the rodent jaw bone micro-architecture: a systematic review. Bone Rep, 2015, 2: 14-24.

[22]

Kivell TL, Skinner MM, Lazenby R. Methodological considerations for analyzing trabecular architecture: an example from the primate hand. J Anat, 2011, 218(2): 209-225.

[23]

Lazenby RA, Skinner MM, Kivell TL. Scaling VOI size in 3D μCT studies of trabecular bone: a test of the over-sampling hypothesis. Am J Phys Anthropol, 2011, 144(2): 196-203.

[24]

Whitehouse WJ, Dyson ED. Scanning electron microscope studies of trabecular bone in the proximal end of the human femur. J Anat, 1974, 118(Pt 3): 417-444.

[25]

Berglundh T, Stavropoulos A Working Group 1 of the VIII European Workshop on Periodontology Preclinical in vivo research in implant dentistry. Consensus of the eighth European workshop on periodontology. J Clin Periodontol, 2012, 39(Suppl 12): 1-5.

[26]

Kilkenny C, Browne WJ, Cuthill IC. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol, 2010, 8(6): e1000412.

[27]

Mavropoulos A, Rizzoli R, Ammann P. Different responsiveness of alveolar and tibial bone to bone loss stimuli. J Bone Miner Res, 2007, 22(3): 403-410.

[28]

Prado RF, Silveira , Rocha RF. Effects of experimental osteoporosis and low calcium intake on postextraction sockets of rats. Int J Exp Pathol, 2012, 93(2): 139-147.

[29]

Yang J, Pham SM, Crabbe DL. Effects of oestrogen deficiency on rat mandibular and tibial microarchitecture. Dentomaxillofac Radiol, 2003, 32(4): 247-251.

[30]

Ejiri S, Tanaka M, Watanabe N. Estrogen deficiency and its effect on the jaw bones. J Bone Miner Metab, 2008, 26(5): 409-415.

[31]

Mavropoulos A, Kiliaridis S, Rizzoli R. Normal masticatory function partially protects the rat mandibular bone from estrogen-deficiency induced osteoporosis. J Biomech, 2014, 47(11): 2666-2671.

[32]

Salmon PL, Ohlsson C, Shefelbine SJ. Structure model index does not measure rods and plates in trabecular bone. Front Endocrinol, 2015, 6: 162.

[33]

Hsu PY, Tsai MT, Wang SP. Cortical bone morphological and trabecular bone microarchitectural changes in the mandible and femoral neck of ovariectomized rats. PLoS One, 2016, 11(4): e0154367.

[34]

Kuroda S, Mukohyama H, Kondo H. Bone mineral density of the mandible in ovariectomized rats: analyses using dual energy X-ray absorptiometry and peripheral quantitative computed tomography. Oral Dis, 2003, 9(1): 24-28.

[35]

Maga M, Kappelman J, Ryan TM. Preliminary observations on the calcaneal trabecular microarchitecture of extant large-bodied hominoids. Am J Phys Anthropol, 2006, 129(3): 410-417.

[36]

Westerlind KC, Wronski TJ, Ritman EL. Estrogen regulates the rate of bone turnover but bone balance in ovariectomized rats is modulated by prevailing mechanical strain. Proc Natl Acad Sci USA, 1997, 94(8): 4199-4204.

[37]

Van Dessel J, Huang Y, Depypere M. A comparative evaluation of cone beam CT and micro-CT on trabecular bone structures in the human mandible. Dentomaxillofac Radiol, 2013, 42(8): 20130145.

[38]

Leng HJ, Wang X, Ross RD. Micro-computed tomography of fatigue microdamage in cortical bone using a barium sulfate contrast agent. J Mech Behav Biomed Mater, 2008, 1(1): 68-75.

[39]

Duvall CL, Taylor WR, Weiss D. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res, 2007, 22(2): 286-297.

[40]

Chen RR, Snow JK, Palmer JP. Host immune competence and local ischemia affects the functionality of engineered vasculature. Microcirculation, 2007, 14(2): 77-88.

[41]

Duvall CL, Taylor WR, Weiss D. Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol Heart Circ Physiol, 2004, 287(1): H302-H310.

[42]

Duvall CL, Weiss D, Robinson ST. The role of osteopontin in recovery from hind limb ischemia. Arterioscler Thromb Vasc Biol, 2008, 28(2): 290-295.

[43]

Palmer AW, Guldberg RE, Levenston ME. Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography. Proc Natl Acad Sci USA, 2006, 103(51): 19255-19260.

[44]

Xie L, Lin AS, Levenston ME. Quantitative assessment of articular cartilage morphology via EPIC-microCT. Osteoarthritis Cartilage, 2009, 17(3): 313-320.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/