A new approach to transfect NF-κB decoy oligodeoxynucleotides into the periodontal tissue using the ultrasound-microbubble method

Hiroyuki Yamaguchi , Yuji Ishida , Jun Hosomichi , Jun-ichi Suzuki , Risa Usumi-Fujita , Yasuhiro Shimizu , Sawa Kaneko , Takashi Ono

International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (2) : 80 -86.

PDF
International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (2) : 80 -86. DOI: 10.1038/ijos.2017.10
Article

A new approach to transfect NF-κB decoy oligodeoxynucleotides into the periodontal tissue using the ultrasound-microbubble method

Author information +
History +
PDF

Abstract

A combination of tiny gas-filled bubbles and ultrasound radiation can be used to deliver anti-inflammatory agents into periodontal tissue. The treatment produces pores in the surface of cells, facilitating the passage of therapeutics. Yuji Ishida of the Tokyo Medical and Dental University and collaborators successfully used the technique to transfer specific decoy oligodeoxynucleotides (ODN) into the oral tissues of healthy mice. These ODN are short stretches of genetic material that block the action of a key immune response modulator, preventing the expression of inflammatory proteins. Previous studies have demonstrated the clinical utility of this method in arterial disease; however, Ishida’s team show that ultrasound and microbubble treatment with decoy ODN reduces the expression of inflammatory proteins in periodontal tissue. The method offers a promising, noninvasive method to treat inflammatory oral disease.

Keywords

decoy oligodeoxynucleotide / gene therapy / periodontal tissue / ultrasound

Cite this article

Download citation ▾
Hiroyuki Yamaguchi, Yuji Ishida, Jun Hosomichi, Jun-ichi Suzuki, Risa Usumi-Fujita, Yasuhiro Shimizu, Sawa Kaneko, Takashi Ono. A new approach to transfect NF-κB decoy oligodeoxynucleotides into the periodontal tissue using the ultrasound-microbubble method. International Journal of Oral Science, 2017, 9(2): 80-86 DOI:10.1038/ijos.2017.10

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Saglie FR, Pertuiset J, Rezende MT. In situ correlative immuno-identification of mononuclear infiltrates and invasive bacteria in diseased gingiva. J Periodontol, 1988, 59(10): 688-696.

[2]

Gamonal J, Acevedo A, Bascones A. Levels of interleukin-1β, -8, and -10 and RANTES in gingival crevicular fluid and cell populations in adult periodontitis patients and the effect of periodontal treatment. J Periodontol, 2000, 71(10): 1535-1545.

[3]

Latanich CA, Toledo-Pereyra LH. Searching for NF-κB-based treatments of ischemia reperfusion injury. J Invest Surg, 2009, 22(4): 301-315.

[4]

Sen R, Baltimore D. Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell, 1986, 47(6): 921-928.

[5]

Tomita N, Morishita R, Tomita S. Transcription factor decoy for NFκB inhibits TNF-α-induced cytokine and adhesion molecule expression in vivo. Gene Ther, 2000, 7(15): 1326-1332.

[6]

Azuma H, Tomita N, Kaneda Y. Transfection of NFκB-decoy oligodeoxynucleotides using efficient ultrasound-mediated gene transfer into donor kidneys prolonged survival of rat renal allografts. Gene Ther, 2003, 10(5): 415-425.

[7]

Sandros J, Karlsson C, Lappin DF. Cytokine responses of oral epithelial cells to Porphyromonas gingivalis infection. J Dent Res, 2000, 79(10): 1808-1814.

[8]

Fire A, Xu SQ, Montgomery MK. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391(6669): 806-811.

[9]

Koirala A, Conley SM, Naash MI. A review of therapeutic prospects of non-viral gene therapy in the retinal pigment epithelium. Biomaterials, 2013, 34(29): 7158-7167.

[10]

Morishita R, Sugimoto T, Aoki M. In vivo transfection of cis element 'decoy' against nuclear factor-κB binding site prevents myocardial infarction. Nat Med, 1997, 3(8): 894-899.

[11]

Morishita R, Tomita N, Kaneda Y. Molecular therapy to inhibit NFκB activation by transcription factor decoy oligonucleotides. Curr Opin Pharmacol, 2004, 4(2): 139-146.

[12]

De Stefano D. Oligonucleotides decoy to NF-κB: becoming a reality?. Discov Med, 2011, 12(63): 97-105.

[13]

Yokozeki H. [A Decoy Oligodeoxynucleotides therapy for allergic skin diseases]. Nihon Rinsho Meneki Gakkai Kaishi, 2012, 35(2): 107-111. Japanese.

[14]

Egashira K, Suzuki J, Ito H. Long-term follow up of initial clinical cases with NF-κB decoy oligodeoxynucleotide transfection at the site of coronary stenting. J Gene Med, 2008, 10(7): 805-809.

[15]

Fechheimer M, Boylan JF, Parker S. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading. Proc Natl Acad Sci USA, 1987, 84(23): 8463-8467.

[16]

Paefgen V, Doleschel D, Kiessling F. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol, 2015, 6: 197.

[17]

Leow CH, Iori F, Corbett R. Microbubble void imaging: a non-invasive technique for flow visualisation and quantification of mixing in large vessels using plane wave ultrasound and controlled microbubble contrast agent destruction. Ultrasound Med Biol, 2015, 41(11): 2926-2937.

[18]

Teraphongphom N, Chhour P, Eisenbrey JR. Nanoparticle loaded polymeric microbubbles as contrast agents for multimodal imaging. Langmuir, 2015, 31(43): 11858-11867.

[19]

Ferrara K, Pollard R, Borden M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu Rev Biomed Eng, 2007, 9: 415-447.

[20]

Taniyama Y, Morishita R. [Development of plasmid DNA-based gene transfer]. Yakugaku Zasshi, 2006, 126(11): 1039-1045. Japanese.

[21]

Taniyama Y, Tachibana K, Hiraoka K. Local delivery of plasmid DNA into rat carotid artery using ultrasound. Circulation, 2002, 105(10): 1233-1239.

[22]

Stride E, Porter C, Prieto AG. Enhancement of microbubble mediated gene delivery by simultaneous exposure to ultrasonic and magnetic fields. Ultrasound Med Biol, 2009, 35(5): 861-868.

[23]

Suzuki J, Ogawa M, Takayama K. Ultrasound-microbubble-mediated intercellular adhesion molecule-1 small interfering ribonucleic acid transfection attenuates neointimal formation after arterial injury in mice. J Am Coll Cardiol, 2010, 55(9): 904-913.

[24]

Inagaki H, Suzuki J, Ogawa M. Ultrasound-microbubble-mediated NF-κB decoy transfection attenuates neointimal formation after arterial injury in mice. J Vasc Res, 2006, 43(1): 12-18.

[25]

Inoue H, Arai Y, Kishida T. Sonoporation-mediated transduction of siRNA ameliorated experimental arthritis using 3 MHz pulsed ultrasound. Ultrasonics, 2014, 54(3): 874-881.

[26]

Kawamoto T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Hisotol Cytol, 2003, 66(2): 123-143.

[27]

Usumi-Fujita R, Hosomichi J, Ono N. Occlusal hypofunction causes periodontal atrophy and VEGF/VEGFR inhibition in tooth movement. Angle Orthod, 2013, 83(1): 48-56.

[28]

Pavlova I, Williams M, El-Naggar A. Understanding the biological basis of autofluorescence imaging for oral cancer detection: high-resolution fluorescence microscopy in viable tissue. Clin Cancer Res, 2008, 14(8): 2396-2404.

[29]

Lee FY, Chen DW, Hu CC. In vitro and in vivo investigation of drug-eluting implants for the treatment of periodontal disease. AAPS PharmSciTech, 2011, 12(4): 1110-1115.

[30]

Sugano M, Negishi Y, Endo-Takahashi Y. Gene delivery to periodontal tissue using Bubble liposomes and ultrasound. J Periodontal Res, 2014, 49(3): 398-404.

[31]

Shimizu H, Nakagami H, Morita S. New treatment of periodontal diseases by using NF-κB decoy oligodeoxynucleotides via prevention of bone resorption and promotion of wound healing. Antioxid Redox Signal, 2009, 11(9): 2065-2075.

[32]

Endoh M, Koibuchi N, Sato M. Fetal gene transfer by intrauterine injection with microbubble-enhanced ultrasound. Mol Ther, 2002, 5(5 Pt 1): 501-508.

[33]

Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46(5): 705-716.

[34]

Barnes PJ, Karin M. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med, 1997, 336(15): 1066-1071.

[35]

Brasier AR. The nuclear factor-κB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res, 2010, 86(2): 211-218.

[36]

Suzuki J, Morishita R, Amano J. Decoy against nuclear factor-κB attenuates myocardial cell infiltration and arterial neointimal formation in murine cardiac allografts. Gene Ther, 2000, 7(21): 1847-1852.

[37]

Yokozeki H. A nucleic acid-based medication for allergic skin diseases. J Dermatol Sci, 2014, 75(2): 75-81.

[38]

Ohtani K, Egashira K, Nakano K. Stent-based local delivery of nuclear factor-κB decoy attenuates in-stent restenosis in hypercholesterolemic rabbits. Circulation, 2006, 114(25): 2773-2779.

[39]

Desmet C, Gosset P, Pajak B. Selective blockade of NF-κB activity in airway immune cells inhibits the effector phase of experimental asthma. J Immunol, 2004, 173(9): 5766-5775.

[40]

Fichtner-Feigl S, Fuss IJ, Preiss JC. Treatment of murine Th1- and Th2-mediated inflammatory bowel disease with NF-κB decoy oligonucleotides. J Clin Invest, 2005, 115(11): 3057-3071.

[41]

Yokozeki H, Wu MH, Sumi K. In vivo transfection of a cis element 'decoy' against signal transducers and activators of transcription 6 (STAT6)-binding site ameliorates IgE-mediated late-phase reaction in an atopic dermatitis mouse model. Gene Ther, 2004, 11(24): 1753-1762.

[42]

Miyake Takashi Ihara S, Miyake T. Prevention of neointimal formation after angioplasty using nuclear factor-κB decoy oligodeoxynucleotide-coated balloon catheter in rabbit model. Circ Cardiovasc Interv, 2014, 7(6): 787-796.

[43]

Havemose-Poulsen A, Holmstrup P. Factors affecting IL-1-mediated collagen metabolism by fibroblasts and the pathogenesis of periodontal disease: a review of the literature. Crit Rev Oral Biol Med, 1997, 8(2): 217-236.

[44]

Stashenko P, Fujiyoshi P, Obernesser MS. Levels of interleukin 1β in tissue from sites of active periodontal disease. J Clin Periodontol, 1991, 18(7): 548-554.

[45]

Kono Y, Beagley KW, Fujihashi K. Cytokine regulation of localized inflammation. Induction of activated B cells and IL-6-mediated polyclonal IgG and IgA synthesis in inflamed human gingiva. J Immunol, 1991, 146(6): 1812-1821.

[46]

Ohsaki Y, Takahashi S, Scarcez T. Evidence for an autocrine/paracrine role for interleukin-6 in bone resorption by giant cells from giant cell tumors of bone. Endocrinology, 1992, 131(5): 2229-2234.

[47]

Springer TA. Adhesion receptors of the immune system. Nature, 1990, 346(6283): 425-434.

[48]

Seth R, Raymond FD, Makgoba MW. Circulating ICAM-1 isoforms: diagnostic prospects for inflammatory and immune disorders. Lancet, 1991, 338(8759): 83-84.

[49]

Erdemir EO, Hendek MK, Keceli HG. Crevicular fluid levels of interleukin-8, interleukin-17 and soluble intercellular adhesion molecule-1 after regenerative periodontal therapy. Eur J Dent, 2015, 9(1): 60-65.

[50]

Mougenot C, Köhler MO, Enholm J. Quantification of near-field heating during volumetric MR-HIFU ablation. Med Phys, 2011, 38(1): 272-282.

[51]

Ahmed HU, Ishaq A, Zacharakis E. Rectal fistulae after salvage high-intensity focused ultrasound for recurrent prostate cancer after combined brachytherapy and external beam radiotherapy. BJU Int, 2009, 103(3): 321-323.

[52]

Nakamura H, Aoki M, Tamai K. Prevention and regression of atopic dermatitis by ointment containing NF-kB decoy oligodeoxynucleotides in NC/Nga atopic mouse model. Gene Ther, 2002, 9(18): 1221-1229.

[53]

Dajee M, Muchamuel T, Schryver B. Blockade of experimental atopic dermatitis via topical NF-kB decoy oligonucleotide. J Invest Dermatol, 2006, 126(8): 1792-1803.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/