In silico identification of potential inhibitors targeting Streptococcus mutans sortase A

Hao Luo , Dan-Feng Liang , Min-Yue Bao , Rong Sun , Yuan-Yuan Li , Jian-Zong Li , Xin Wang , Kai-Min Lu , Jin-Ku Bao

International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (1) : 53 -62.

PDF
International Journal of Oral Science ›› 2017, Vol. 9 ›› Issue (1) : 53 -62. DOI: 10.1038/ijos.2016.58
Article

In silico identification of potential inhibitors targeting Streptococcus mutans sortase A

Author information +
History +
PDF

Abstract

A team of researchers has demonstrated a potential new method of designing treatments for dental caries via computer modeling. Jin-Ku Bao and collaborators from Sichuan University, China, used computer-aided drug design techniques to search libraries of compounds for inhibitors of Streptococcus mutans sortase A. This enzyme allows the bacteria to adhere to teeth and facilitate decay. After narrowing the search to nine candidates, Bao's team modeled the compounds' toxicity and pharmacological properties: how the compounds were likely to be absorbed, distributed, metabolized and excreted by hosts. The team found several potent inhibitors, offering a potential new path for designing treatments for diseases associated with bacterial adhesion. The findings are particularly significant considering the status of S. mutans as the principal cause of dental caries.

Keywords

dental caries / molecular dynamics simulation / molecular docking / potential inhibitors / sortase A / Streptococcus mutans

Cite this article

Download citation ▾
Hao Luo, Dan-Feng Liang, Min-Yue Bao, Rong Sun, Yuan-Yuan Li, Jian-Zong Li, Xin Wang, Kai-Min Lu, Jin-Ku Bao. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A. International Journal of Oral Science, 2017, 9(1): 53-62 DOI:10.1038/ijos.2016.58

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wallock-Richards DJ, Marles-Wright J, Clarke DJ. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chem Commun (Camb), 2015, 51(52): 10483-10485.

[2]

Frankel BA, Bentley M, Kruger RG. Vinyl sulfones: inhibitors of SrtA, a transpeptidase required for cell wall protein anchoring and virulence in Staphylococcus aureus. J Am Chem Soc, 2004, 126(11): 3404-3405.

[3]

Clancy KW, Melvin JA, McCafferty DG. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers, 2010, 94(4): 385-396.

[4]

Li MY, Huang RJ, Zhou XD. Role of sortase in Streptococcus mutans under the effect of nicotine. Int J Oral Sci, 2013, 5(4): 206-211.

[5]

Ilangovan U, Ton-That H, Iwahara J. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc Natl Acad Sci USA, 2001, 98(11): 6056-6061.

[6]

Spirig T, Weiner EM, Clubb RT. Sortase enzymes in gram-positive bacteria. Mol Microbiol, 2011, 82(5): 1044-1059.

[7]

Paterson GK, Mitchell TJ. The biology of gram-positive sortase enzymes. Trends Microbiol, 2004, 12(2): 89-95.

[8]

Ton-That H, Schneewind O. Anchor structure of staphylococcal surface proteins IV. Inhibitors of the cell wall sorting reaction. J Biol Chem, 1999, 274(34): 24316-24320.

[9]

Frankel BA, Tong Y, Bentley ML. Mutational analysis of active site residues in the Staphylococcus aureus transpeptidase SrtA. Biochemistry, 2007, 46(24): 7269-7278.

[10]

Petersen PE, Bourgeois D, Ogawa H. The global burden of oral diseases and risks to oral health. Bull World Health Organ, 2005, 83(9): 661-669.

[11]

Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev, 1986, 50(4): 353-380.

[12]

Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet, 2007, 369(9555): 51-59.

[13]

Liljemark WF, Bloomquist C. Human oral microbial ecology and dental caries and periodontal diseases. Crit Rev Oral Biol Med, 1996, 7(2): 180-198.

[14]

Hu P, Huang P, Chen WM. Curcumin inhibits the Sortase A activity of the Streptococcus mutans UA159. Appl Biochem Biotechnol, 2013, 171(2): 396-402.

[15]

Yoshida A, Ansai T, Takehara T. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol, 2005, 71(5): 2372-2380.

[16]

Bowen WH, Koo H. Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res, 2011, 45(1): 69-86.

[17]

Igarashi T, Asaga E, Goto N. The sortase of Streptococcus mutans mediates cell wall anchoring of a surface protein antigen. Oral Microbiol Immunol, 2003, 18(4): 266-269.

[18]

Lee SF, Boran TL. Roles of sortase in surface expression of the major protein adhesin P1, saliva-induced aggregation and adherence, and cariogenicity of Streptococcus mutans. Infect Immun, 2003, 71(2): 676-681.

[19]

Huang P, Hu P, Zhou SY. Morin inhibits sortase A and subsequent biofilm formation in Streptococcus mutans. Curr Microbiol, 2014, 68(1): 47-52.

[20]

Yang WY, Won TH, Ahn CH. Streptococcus mutans sortase A inhibitory metabolites from the flowers of Sophora japonica. Bioorg Med Chem Lett, 2015, 25(7): 1394-1397.

[21]

Chen F, Wang D. Novel technologies for the prevention and treatment of dental caries: a patent survey. Expert Opin Ther Pat, 2010, 20(5): 681-694.

[22]

Song CM, Lim SJ, Tong JC. Recent advances in computer-aided drug design. Brief Bioinform, 2009, 10(5): 579-591.

[23]

Meng EC, Pettersen EF, Couch GS. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics, 2006, 7: 339.

[24]

Robin X, Turck N, Hainard A. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 2011, 12: 77.

[25]

Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr, 2007, 96(5): 644-647.

[26]

Allen WJ, Balius TE, Mukherjee S. DOCK 6: impact of new features and current docking performance. J Comput Chem, 2015, 36(15): 1132-1156.

[27]

Pronk S, Páll S, Schulz R. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 2013, 29(7): 845-854.

[28]

Salomon-Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wires Comput Mol Sci, 2013, 3(2): 198-210.

[29]

Kollman PA, Massova I, Reyes C. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res, 2000, 33(12): 889-897.

[30]

Kumari R, Kumar R, Lynn A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model, 2014, 54(7): 1951-1962.

[31]

Kolenbrander PE, Andersen RN, Blehert DS. Communication among oral bacteria. Microbiol Mol Biol Rev, 2002, 66(3): 486-505.

[32]

Decker EM, Klein C, Schwindt D. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose. Int J Oral Sci, 2014, 6(4): 195-204.

[33]

Liu YL, Nascimento M, Burne RA. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci, 2012, 4(3): 135-140.

[34]

Moustakas DT, Lang PT, Pegg S. Development and validation of a modular, extensible docking program: DOCK 5. J Comput Aided Mol Des, 2006, 20(10/11): 601-619.

[35]

Hawkins GD, Cramer CJ, Truhlar DG. Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett, 1995, 246(1): 122-129.

[36]

Koo H, Hayacibara MF, Schobel BD. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother, 2003, 52(5): 782-789.

[37]

Selvaraj C, Priya RB, Lee JK. Mechanistic insights of SrtA–LPXTG blockers targeting the transpeptidase mechanism in Streptococcus mutans. RSC Adv, 2015, 5(122): 100498-100510.

[38]

Lee SF, McGavin MK. Identification of a point mutation resulting in loss of cell wall anchoring activity of SrtA of Streptococcus mutans NG5. Infect Immun, 2004, 72(7): 4314-4317.

[39]

Chenna BC, Shinkre BA, King JR. Identification of novel inhibitors of bacterial surface enzyme Staphylococcus aureus Sortase A. Bioorg Med Chem Lett, 2008, 18(1): 380-385.

[40]

Zhulenkovs D, Rudevica Z, Jaudzems K. Discovery and structure-activity relationship studies of irreversible benzisothiazolinone-based inhibitors against Staphylococcus aureus sortase A transpeptidase. Bioorg Med Chem, 2014, 22(21): 5988-6003.

[41]

Chan AH, Werezczynski J, Amer BR. Discovery of Staphylococcus aureus Sortase A inhibitors using virtual screening and the relaxed complex scheme. Chem Biol Drug Des, 2013, 82(4): 418-428.

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/