The effect of platform switching on the levels of metal ion release from different implant–abutment couples

Ghada O Alrabeah , Jonathan C Knowles , Haralampos Petridis

International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (2) : 117 -125.

PDF
International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (2) : 117 -125. DOI: 10.1038/ijos.2016.5
Article

The effect of platform switching on the levels of metal ion release from different implant–abutment couples

Author information +
History +
PDF

Abstract

A potential link has been established between bone response and metal corrosion near dental implants. Platform switching, in which smaller diameter restorative components, or abutments, are positioned on large implant platforms, minimizes loss in the bone that supports the tooth—a requirement for successful implantation. However, mechanisms governing this positive peri-implant bone response remain unclear. Haralampos Petridis and coworkers from University College London, UK, investigated the role of corrosion by-products near implants by evaluating metal ion release from platform-switched and matched (matching abutment and implant platform diameters) systems immersed in lactic acid. Active corrosion mainly occurred on the outer edges of the implant–abutment interface for all systems, causing metal ion discharge at their vicinity. Platform-matched systems produced the highest amounts of metal ions, suggesting that platform switching limits bone loss by reducing this discharge.

Keywords

corrosion / dental implants / ion release / peri-implant bone loss / platform-switching / titanium

Cite this article

Download citation ▾
Ghada O Alrabeah, Jonathan C Knowles, Haralampos Petridis. The effect of platform switching on the levels of metal ion release from different implant–abutment couples. International Journal of Oral Science, 2016, 8(2): 117-125 DOI:10.1038/ijos.2016.5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albrektsson T, Zarb G, Worthington P. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants, 1986, 1(1): 11-25.

[2]

Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent, 1989, 62(5): 567-572.

[3]

Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent, 2006, 26(1): 9-17.

[4]

Buser D, Wittneben J, Bornstein MM. Stability of contour augmentation and esthetic outcomes of implant-supported single crowns in the esthetic zone: 3-year results of a prospective study with early implant placement postextraction. J Periodontol, 2011, 82(3): 342-349.

[5]

Hürzeler M, Fickl S, Zuhr O. Peri-implant bone level around implants with platform-switched abutments: preliminary data from a prospective study. J Oral Maxillofac Surg, 2007, 65(7 Suppl 1): 33-39.

[6]

Vela-Nebot X, Rodríguez-Ciurana X, Rodado-Alonso C. Benefits of an implant platform modification technique to reduce crestal bone resorption. Implant Dent, 2006, 15(3): 313-320.

[7]

Canullo L, Rasperini G. Preservation of peri-implant soft and hard tissues using platform switching of implants placed in immediate extraction sockets: a proof-of-concept study with 12- to 36-month follow-up. Int J Oral Maxillofac Implants, 2007, 22(6): 995-1000.

[8]

Cappiello M, Luongo R, Di Iorio D. Evaluation of peri-implant bone loss around platform-switched implants. Int J Periodontics Restorative Dent, 2008, 28(4): 347-355.

[9]

Atieh MA, Ibrahim HM, Atieh AH. Platform switching for marginal bone preservation around dental implants: a systematic review and meta-analysis. J Periodontol, 2010, 81(10): 1350-1366.

[10]

Maeda Y, Miura J, Taki I. Biomechanical analysis on platform switching: is there any biomechanical rationale?. Clin Oral Implants Res, 2007, 18(5): 581-584.

[11]

Tabata LF, Rocha EP, Barão VA. Platform switching: biomechanical evaluation using three-dimensional finite element analysis. Int J Oral Maxillofac Implants, 2011, 26(3): 482-491.

[12]

Pellizzer EP, Falcón-Antenucci RM, de Carvalho PS. Photoelastic analysis of the influence of platform switching on stress distribution in implants. J Oral Implantol, 2010, 36(6): 419-424.

[13]

Broggini N, McManus LM, Hermann JS. Peri-implant inflammation defined by the implant-abutment interface. J Dent Res, 2006, 85(5): 473-478.

[14]

Todescan FF, Pustiglioni FE, Imbronito AV. Influence of the microgap in the peri-implant hard and soft tissues: a histomorphometric study in dogs. Int J Oral Maxillofac Implants, 2002, 17(4): 467-472.

[15]

Enkling N, Boslau V, Klimberg T. Platform switching: a randomized clinical trial–one year results. J Dent Res, 2009, 88(Spec Issue A): 3394.

[16]

Hermann JS, Buser D, Schenk RK. Biologic Width around one- and two-piece titanium implants. Clin Oral Implants Res, 2001, 12(6): 559-571.

[17]

Canay S, Akça K. Biomechanical aspects of bone-level diameter shifting at implant-abutment interface. Implant Dent, 2009, 18(3): 239-248.

[18]

Schrotenboer J, Tsao YP, Kinariwala V. Effect of platform switching on implant crest bone stress: a finite element analysis. Implant Dent, 2009, 18(3): 260-269.

[19]

Qian J, Wennerberg A, Albrektsson T. Reasons for marginal bone loss around oral implants. Clin Implant Dent Relat Res, 2012, 14(6): 792-807.

[20]

Canullo L, Quaranta A, Teles RP. The microbiota associated with implants restored with platform switching: a preliminary report. J Periodontol, 2010, 81(3): 403-411.

[21]

Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants. J Bone Joint Surg Am, 1998, 80(2): 268-282.

[22]

Jacobs JJ, Hallab NJ, Skipor AK et al. Metal degradation products: a cause for concern in metal-metal bearings? Clin Orthop Relat Res 2003: (417): 139–147.

[23]

Olmedo DG, Paparella ML, Brandizzi D. Reactive lesions of peri-implant mucosa associated with titanium dental implants: a report of 2 cases. Int J Oral Maxillofac Surg, 2010, 39(5): 503-507.

[24]

DiCarlo EF, Bullough PG. The biologic responses to orthopedic implants and their wear debris. Clin Mater, 1992, 9(3/4): 235-260.

[25]

Jacobs JJ, Hallab NJ, Urban RM. Wear particles. J Bone Joint Surg Am, 2006, 88(Suppl 2): 99-102.

[26]

Jacobs JJ, Hallab NJ. Loosening and osteolysis associated with metal-on-metal bearings: a local effect of metal hypersensitivity?. J Bone Joint Surg Am, 2006, 88(6): 1171-1172.

[27]

Goodman SB. Wear particles, periprosthetic osteolysis and the immune system. Biomaterials, 2007, 28(34): 5044-5048.

[28]

Jacobs JJ, Roebuck KA, Archibeck M et al. Osteolysis: basic science. Clin Orthop Relat Res 2001: (393): 71–77.

[29]

Vermes C, Chandrasekaran R, Jacobs JJ. The effects of particulate wear debris, cytokines, and growth factors on the functions of MG-63 osteoblasts. J Bone Joint Surg Am, 2001, 83-A(2): 201-211.

[30]

Sabokbar A, Kudo O, Athanasou NA. Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis. J Orthop Res, 2003, 21(1): 73-80.

[31]

Purdue PE, Koulouvaris P, Potter HG. The cellular and molecular biology of periprosthetic osteolysis. Clin Orthop Relat Res, 2007, 454(1): 251-261.

[32]

Pearle AD, Crow MK, Rakshit DS. Distinct inflammatory gene pathways induced by particles. Clin Orthop Relat Res, 2007, 458: 194-201.

[33]

Hallab NJ, Jacobs JJ. Biologic effects of implant debris. Bull NYU Hosp Jt Dis, 2009, 67(2): 182-188.

[34]

Wang RR, Fenton A. Titanium for prosthodontic applications: a review of the literature. Quintessence Int, 1996, 27(6): 401-408.

[35]

Whitters CJ, Strang R, Brown D. Dental materials: 1997 literature review. J Dent, 1999, 27(6): 401-435.

[36]

Gittens RA, Olivares-Navarrete R, Tannenbaum R. Electrical implications of corrosion for osseointegration of titanium implants. J Dent Res, 2011, 90(12): 1389-1397.

[37]

Geis-Gerstorfer J, Sauer KH, Pässler K. Ion release from Ni-Cr-Mo and Co-Cr-Mo casting alloys. Int J Prosthodont, 1991, 4(2): 152-158.

[38]

Hjalmarsson L, Smedberg JI, Wennerberg A. Material degradation in implant-retained cobalt-chrome and titanium frameworks. J Oral Rehabil, 2011, 38(1): 61-71.

[39]

Brune D. Metal release from dental biomaterials. Biomaterials, 1986, 7(3): 163-175.

[40]

Wataha JC, Malcolm CT, Hanks CT. Correlation between cytotoxicity and the elements released by dental casting alloys. Int J Prosthodont, 1995, 8(1): 9-14.

[41]

Koike M, Lockwood PE, Wataha JC. Initial cytotoxicity of novel titanium alloys. J Biomed Mater Res Part B Appl Biomater, 2007, 83(2): 327-331.

[42]

Ribeiro DA, Matsumoto MA, Padovan LE. Genotoxicity of corrosion eluates obtained from endosseous implants. Implant Dent, 2007, 16(1): 101-109.

[43]

Wataha JC. Biocompatibility of dental casting alloys: a review. J Prosthet Dent, 2000, 83(2): 223-234.

[44]

Taylor JC, Anderson GI, Sutow EJ. The effects of the coupling of titanium implants and dissimilar metal abutments on osteoblast differentiation in vitro. Int J Oral Maxillofac Implants, 1999, 14(6): 785-797.

[45]

International Standards Organization. ISO 10271. Dentistry—Corrosion test methods for metallic materials. Geneva: International Standards Organization.

[46]

Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent, 2002, 87(4): 351-363.

[47]

Roberge PR. Corrosion engineering: principles and practice, 2008 New York: McGraw-Hill

[48]

Souza JC, Ponthiaux P, Henriques M. Corrosion behaviour of titanium in the presence of Streptococcus mutans. J Dent, 2013, 41(6): 528-534.

[49]

Grosgogeat B, Reclaru L, Lissac M. Measurement and evaluation of galvanic corrosion between titanium/Ti6A14V implants and dental alloys by electrochemical techniques and auger spectrometry. Biomaterials, 1999, 20(10): 933-941.

[50]

Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 2005, 26(1): 11-21.

[51]

Koike M, Fujii H. The corrosion resistance of pure titanium in organic acids. Biomaterials, 2001, 22(21): 2931-2936.

[52]

Tuna SH, Pekmez NO, Keyf F. The electrochemical properties of four dental casting suprastructure alloys coupled with titanium implants. J Appl Oral Sci, 2009, 17(5): 467-475.

[53]

Cortada M, Giner L, Costa S. Metallic ion release in artificial saliva of titanium oral implants coupled with different metal superstructures. Biomed Mater Eng, 1997, 7(3): 213-220.

[54]

Bernhardt A, Thieme S, Domaschke H. Crosstalk of osteoblast and osteoclast precursors on mineralized collagen—towards an in vitro model for bone remodeling. J Biomed Mater Res A, 2010, 95(3): 848-856.

[55]

Yu F, Addison O, Baker SJ. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity. Int J Oral Sci, 2015, 7(3): 179-186.

[56]

Yoneyama T, Doi H, Hamanaka H. Released metallic ions from Ti, Ti-6Al-4V alloy and Ni-Ti alloy. J Jpn Soc Biomater, 1993, 11: 71-81.

[57]

Yamazoe M. Study of corrosion of combinations of titanium/Ti-6Al-4V implants and dental alloys. Dent Mater J, 2010, 29(5): 542-553.

[58]

Koike M, Fujii H. In vitro assessment of corrosive properties of titanium as a biomaterial. J Oral Rehabil, 2001, 28(6): 540-548.

[59]

Hjalmarsson L, Smedberg JI, Aronsson G. Cellular responses to cobalt-chrome and CP titanium—an in vitro comparison of frameworks for implant-retained oral prostheses. Swed Dent J, 2011, 35(4): 177-186.

[60]

Agarwal S. Osteolysis—basic science, incidence and diagnosis. Curr Orthopaed, 2004, 18(3): 220-231.

[61]

Sun ZL, Wataha JC, Hanks CT. Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res, 1997, 34(1): 29-37.

[62]

Zijlstra WP, Bulstra SK, van Raay JJ. Cobalt and chromium ions reduce human osteoblast-like cell activity in vitro, reduce the OPG to RANKL ratio, and induce oxidative stress. J Orthop Res, 2012, 30(5): 740-747.

[63]

Jing D, Hao J, Shen Y. The role of microRNAs in bone remodeling. Int J Oral Sci, 2015, 7(3): 131-143.

[64]

Canullo L, Fedele GR, Iannello G. Platform switching and marginal bone-level alterations: the results of a randomized-controlled trial. Clin Oral Implants Res, 2010, 21(1): 115-121.

[65]

Cortada M, Giner L, Costa S. Galvanic corrosion behavior of titanium implants coupled to dental alloys. J Mater Sci Mater Med, 2000, 11(5): 287-293.

[66]

Reclaru L, Meyer JM. Study of corrosion between a titanium implant and dental alloys. J Dent, 1994, 22(3): 159-168.

[67]

Theologie-Lygidakis N, Iatrou I, Eliades G. A retrieval study on morphological and chemical changes of titanium osteosynthesis plates and adjacent tissues. J Craniomaxillofac Surg, 2007, 35(3): 168-176.

[68]

Wilson TG Jr, Valderrama P, Burbano M. Foreign bodies associated with peri-implantitis human biopsies. J Periodontol, 2015, 86(1): 9-15.

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/