Primer containing dimethylaminododecyl methacrylate kills bacteria impregnated in human dentin blocks

Chen Chen , Lei Cheng , Michael D Weir , Nancy J Lin , Sheng Lin-Gibson , Xue-Dong Zhou , Hockin HK Xu

International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (4) : 239 -245.

PDF
International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (4) : 239 -245. DOI: 10.1038/ijos.2016.43
Article

Primer containing dimethylaminododecyl methacrylate kills bacteria impregnated in human dentin blocks

Author information +
History +
PDF

Abstract

A novel antibacterial agent shows promise for use in dental bonding agents and other restorative materials. To preserve tooth structure for successful long-term restorations, dentists are now encouraged to remove as little decayed dentin as possible, but this requires new materials and techniques. Hockin HK Xu at the University of Maryland, USA, Xue-Dong Zhou at Sichuan University in China, and co-workers tested dental primers (chemicals that are applied before adhesive to increase bonding strength) made with an antibacterial agent called dimethylaminododecyl methacrylate (DMADDM). After treatment with 10% DMADDM primer, dentin infected with the bacterium Streptococcus mutans, a leading cause of decay, showed a far larger bacterial inhibition zone, and a much lower bacterial count than dentin treated with a control primer. DMADDM also outperformed a primer containing an existing antibacterial agent.

Keywords

antibacterial bonding agent / dental restoration / dentin bond strength / dimethylaminododecyl methacrylate / killing bacteria in dentin / Streptococcus mutans

Cite this article

Download citation ▾
Chen Chen, Lei Cheng, Michael D Weir, Nancy J Lin, Sheng Lin-Gibson, Xue-Dong Zhou, Hockin HK Xu. Primer containing dimethylaminododecyl methacrylate kills bacteria impregnated in human dentin blocks. International Journal of Oral Science, 2016, 8(4): 239-245 DOI:10.1038/ijos.2016.43

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ten Cate JM. Biofilms, a new approach to the microbiology of dental plaque. Odontology, 2006, 94(1): 1-9.

[2]

Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet, 2007, 369(9555): 51-59.

[3]

Beazoglou T, Eklund S, Heffley D. Economic impact of regulating the use of amalgam restorations. Public Health Rep, 2007, 122(5): 657-663.

[4]

Bayne SC, Thompson JY, Swift EJ Jr. A characterization of first-generation flowable composites. J Am Dent Assoc, 1998, 129(5): 567-577.

[5]

Lim BS, Ferracane JL, Sakaguchi RL. Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent Mater, 2002, 18(6): 436-444.

[6]

Xu X, Ling L, Wang R. Formation and characterization of a novel fluoride-releasing dental composite. Dent Mater, 2006, 22(11): 1014-1023.

[7]

Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. J Dent Res, 2008, 87(8): 710-719.

[8]

Imazato S. Bioactive restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent Mater J, 2009, 28(1): 11-19.

[9]

Amirouche-Korichi A, Mouzali M, Watts DC. Effects of monomer ratios and highly radiopaque fillers on degree of conversion and shrinkage-strain of dental resin composites. Dent Mater, 2009, 25(11): 1411-1418.

[10]

Samuel SP, Li S, Mukherjee I. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent Mater, 2009, 25(3): 296-301.

[11]

Ferracane JL. Resin composite – state of the art. Dent Mater, 2011, 27(1): 29-38.

[12]

Mjor IA, Toffenetti F. Secondary caries: a literature review with case reports. Quintessence Int, 2000, 31(3): 165-179.

[13]

Kidd EAM, Banerjee A. What is absence of caries? // Albrektsson TO, Bratthall D, Glantz POJ et al. Tissue preservation in caries treatment. New Malden: Quintessence Publishing, 2000; 69–79.

[14]

de Almeida Neves A, Coutinho E, Cardoso MV. Current concepts and techniques for caries excavation and adhesion to residual dentin. J Adhes Dent, 2011, 13(1): 7-22.

[15]

Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Summary of discussion from the Portland Composites Symposium (POCOS) June 17-19, 2004, Oregon Health and Science University, Portland, Oregon. Dent Mater, 2005, 21(1): 3-6.

[16]

Imazato S, Kuramoto A, Takahashi Y. In vitro antibacterial effects of the dentin primer of Clearfil Protect Bond. Dent Mater, 2006, 22(6): 527-532.

[17]

Murdoch-Kinch CA, McLean ME. Minimally invasive dentistry. J Am Dent Assoc, 2003, 134(1): 87-95.

[18]

Lynch CD, Frazier KB, McConnell RJ. Minimally invasive management of dental caries: contemporary teaching of posterior resin-based composite placement in U.S. and Canadian dental schools. J Am Dent Assoc, 2011, 142(6): 612-620.

[19]

Ratledge DK, Kidd EA, Beighton D. A clinical and microbiological study of approximal carious lesions. Part 2: efficacy of caries removal following tunnel and class II cavity preparations. Caries Res, 2001, 35(1): 8-11.

[20]

Spencer P, Wang Y. Adhesive phase separation at the dentin interface under wet bonding conditions. J Biomed Mater Res, 2002, 62(3): 447-456.

[21]

Ritter AV, Swift EJ Jr, Heymann HO. An eight-year clinical evaluation of filled and unfilled one-bottle dental adhesives. J Am Dent Assoc, 2009, 140(1): 28-37.

[22]

Garcia-Godoy F, Kramer N, Feilzer AJ. Long-term degradation of enamel and dentin bonds: 6-year results in vitro vs. in vivo. Dent Mater, 2010, 26(11): 1113-1118.

[23]

Pinzon LM, Oguri M, O'Keefe K. Bond strength of adhesives to dentin contaminated with smoker's saliva. Odontology, 2010, 98(1): 37-43.

[24]

Park J, Eslick J, Ye Q. The influence of chemical structure on the properties in methacrylate-based dentin adhesives. Dent Mater, 2011, 27(11): 1086-1093.

[25]

Pashley DH, Tay FR, Breschi L. State of the art etch-and-rinse adhesives. Dent Mater, 2011, 27(1): 1-16.

[26]

Van Meerbeek B, Yoshihara K, Yoshida Y. State of the art of self-etch adhesives. Dent Mater, 2011, 27(1): 17-28.

[27]

Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater, 2003, 19(6): 449-457.

[28]

Tezvergil-Mutluay A, Agee KA, Uchiyama T. The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs. J Dent Res, 2011, 90(4): 535-540.

[29]

Antonucci JM, Zeiger DN, Tang K. Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent Mater, 2012, 28(2): 219-228.

[30]

Xu X, Wang Y, Liao S. Synthesis and characterization of antibacterial dental monomers and composites. J Biomed Mater Res B Appl Biomater, 2012, 100(4): 1151-1162.

[31]

Weng Y, Howard L, Guo X. A novel antibacterial resin composite for improved dental restoratives. J Mater Sci Mater Med, 2012, 23(6): 1553-1561.

[32]

Imazato S, Kinomoto Y, Tarumi H. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent Mater, 2003, 19(4): 313-319.

[33]

Li F, Chen J, Chai Z. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent, 2009, 37(4): 289-296.

[34]

Beyth N, Yudovin-Farber I, Bahir R. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials, 2006, 27(21): 3995-4002.

[35]

Cheng L, Weir MD, Xu HH. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles. Dent Mater, 2012, 28(5): 561-572.

[36]

Cheng L, Zhang K, Weir MD. Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dent Mater, 2013, 29(4): 462-472.

[37]

Cheng L, Weir MD, Zhang K. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. J Dent, 2013, 41(4): 345-355.

[38]

Li F, Weir MD, Chen J. Effect of charge density of bonding agent containing a new quaternary ammonium methacrylate on antibacterial and bonding properties. Dent Mater, 2014, 30(4): 433-441.

[39]

Zhang K, Cheng L, Wu EJ. Effect of water-ageing on dentine bond strength and anti-biofilm activity of bonding agent containing new monomer dimethylaminododecyl methacrylate. J Dent, 2013, 41(6): 504-513.

[40]

Antonucci JM, O’Donnell JN, Schumacher GE. Amorphous calcium phosphate composites and their effect on composite-adhesive-dentin bonding. J Adhes Sci Technol, 2009, 23(7): 1133-1147.

[41]

Melo MA, Cheng L, Zhang K. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater, 2013, 29(2): 199-210.

[42]

Zhang K, Melo MA, Cheng L. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent Mater, 2012, 28(8): 842-852.

[43]

van Houte J. Role of micro-organisms in caries etiology. J Dent Res, 1994, 73(3): 672-681.

[44]

Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives. J Dent Res, 2011, 90(3): 294-303.

[45]

Jokstad A, Bayne S, Blunck U. Quality of dental restorations. FDI Commission Project 2-95. Int Dent J, 2001, 51(3): 117-158.

[46]

Namba N, Yoshida Y, Nagaoka N. Antibacterial effect of bactericide immobilized in resin matrix. Dent Mater, 2009, 25(4): 424-430.

[47]

Imazato S, Kinomoto Y, Tarumi H. Incorporation of antibacterial monomer MDPB into dentin primer. J Dent Res, 1997, 76(3): 768-772.

[48]

Imazato S, Ehara A, Torii M. Antibacterial activity of dentine primer containing MDPB after curing. J Dent, 1998, 26(3): 267-271.

[49]

Hiraishi N, Yiu CK, King NM. Effect of chlorhexidine incorporation into a self-etching primer on dentine bond strength of a luting cement. J Dent, 2010, 38(6): 496-502.

[50]

Brambilla E, Ionescu A, Fadini L. Influence of MDPB-containing primer on Streptococcus mutans biofilm formation in simulated class I restorations. J Adhes Dent, 2013, 15(5): 431-438.

[51]

Tiller JC, Liao CJ, Lewis K. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci USA, 2001, 98(11): 5981-5985.

[52]

Murata H, Koepsel RR, Matyjaszewski K. Permanent, non-leaching antibacterial surface—2: how high density cationic surfaces kill bacterial cells. Biomaterials, 2007, 28(32): 4870-4879.

[53]

Xie D, Weng Y, Guo X. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dent Mater, 2011, 27(5): 487-496.

[54]

Vieira Rde S, da Silva IA Jr. Bond strength to primary tooth dentin following disinfection with a chlorhexidine solution: an in vitro study. Pediatr Dent, 2003, 25(1): 49-52.

[55]

Ercan E, Erdemir A, Zorba YO. Effect of different cavity disinfectants on shear bond strength of composite resin to dentin. J Adhes Dent, 2009, 11(5): 343-346.

[56]

Borges FM, de Melo MA, Lima JP. Antimicrobial effect of chlorhexidine digluconate in dentin: In vitro and in situ study. J Conserv Dent, 2012, 15(1): 22-26.

[57]

Li F, Weir MD, Fouad AF. Effect of salivary pellicle on antibacterial activity of novel antibacterial dental adhesives using a dental plaque microcosm biofilm model. Dent Mater, 2014, 30(2): 182-191.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/