Second premolar agenesis is associated with mandibular form: a geometric morphometric analysis of mandibular cross-sections

Michael H Bertl , Kristina Bertl , Manuel Wagner , André Gahleitner , Andreas Stavropoulos , Christian Ulm , Philipp Mitteroecker

International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (4) : 254 -260.

PDF
International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (4) : 254 -260. DOI: 10.1038/ijos.2016.41
Article

Second premolar agenesis is associated with mandibular form: a geometric morphometric analysis of mandibular cross-sections

Author information +
History +
PDF

Abstract

Common developmental cues probably underlie both premolar tooth agenesis and the shape of the jawbone. About 3% of the population never develop a lower second premolar tooth. What is the relationship between missing teeth and jawbone shape? To find out, a team led by Michael Bertl from the University Clinic of Dentistry in Vienna, Austria, measured anatomical landmark coordinates in the jawbones of 150 patients. They found that people missing a lower second premolar, whether or not their primary second molars had been extracted, had morphological differences that extended across the whole jawbone, pointing to genetic and epigenetic effects affecting the growth of both craniofacial bones and teeth.

Keywords

agenesis / cross-sections / geometric morphometrics / mandibular form

Cite this article

Download citation ▾
Michael H Bertl, Kristina Bertl, Manuel Wagner, André Gahleitner, Andreas Stavropoulos, Christian Ulm, Philipp Mitteroecker. Second premolar agenesis is associated with mandibular form: a geometric morphometric analysis of mandibular cross-sections. International Journal of Oral Science, 2016, 8(4): 254-260 DOI:10.1038/ijos.2016.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergström K. An orthopantomographic study of hypodontia, supernumeraries and other anomalies in school children between the ages of 8–9 years. An epidemiological study. Swed Dent J, 1977, 1(4): 145-157.

[2]

Locht S. Panoramic radiographic examination of 704 Danish children aged 9-10 years. Community Dent Oral Epidemiol, 1980, 8(7): 375-380.

[3]

Polder BJ, Van’t Hof MA, Van der Linden FP. A meta-analysis of the prevalence of dental agenesis of permanent teeth. Community Dent Oral Epidemiol, 2004, 32(3): 217-226.

[4]

Rølling S, Poulsen S. Agenesis of permanent teeth in 8138 Danish schoolchildren: prevalence and intra-oral distribution according to gender. Int J Paediatr Dent, 2009, 19(3): 172-175.

[5]

Rakhshan V. Meta-analysis of observational studies on the most commonly missing permanent dentition (excluding the third molars) in non-syndromic dental patients or randomly-selected subjects, and the factors affecting the observed rates. J Clin Pediatr Dent, 2015, 39(3): 199-207.

[6]

Sletten DW, Smith BM, Southard KA. Retained deciduous mandibular molars in adults: a radiographic study of long-term changes. Am J Orthod Dentofacial Orthop, 2003, 124(6): 625-630.

[7]

Bergendal B. When should we extract deciduous teeth and place implants in young individuals with tooth agenesis. J Oral Rehabil, 2008, 35(Suppl 1): 55-63.

[8]

Albers DD. Ankylosis of teeth in the developing dentition. Quintessence Int, 1986, 17(5): 303-308.

[9]

Bjerklin K, Kurol J, Valentin J. Ectopic eruption of maxillary first permanent molars and association with other tooth and developmental disturbances. Eur J Orthod, 1992, 14(5): 369-375.

[10]

Winter GB, Gelbier MJ, Goodman JR. Severe infra-occlusion and failed eruption of deciduous molars associated with eruptive and developmental disturbances in the permanent dentition: a report of 28 selected cases. Br J Orthod, 1997, 24(2): 149-157.

[11]

Josefsson E, Brattström V, Tegsjö U. Treatment of lower second premolar agenesis by autotransplantation: four-year evaluation of eighty patients. Acta Odontol Scand., 1999, 57(2): 111-115.

[12]

Bokelund M, Andreasen JO, Christensen SS. Autotransplantation of maxillary second premolars to mandibular recipient sites where the primary second molars were impacted, predisposes for complications. Acta Odontol Scand, 2013, 71(6): 1464-1468.

[13]

Fines CD, Rebellato J, Saiar M. Congenitally missing mandibular second premolar: treatment outcome with orthodontic space closure. Am J Orthod Dentofacial Orthop, 2003, 123(6): 676-682.

[14]

Eliášová P, Marek I, Kamínek M. Implant site development in the distal region of the mandible: bone formation and its stability over time. Am J Orthod Dentofacial Orthop, 2014, 145(3): 333-340.

[15]

Sabri R. Management of congenitally missing second premolars with orthodontics and single-tooth implants. Am J Orthod Dentofacial Orthop, 2004, 125(5): 634-642.

[16]

Borzabadi-Farahani A. Orthodontic considerations in restorative management of hypodontia patients with endosseous implants. J Oral Implantol, 2012, 38(6): 779-791.

[17]

Linder-Aronson S. The relation between nasorespiratory function and dentofacial morphology. Am J Orthod, 1983, 83(5): 443-444.

[18]

Yamada T, Tanne K, Miyamoto K. Influences of nasal respiratory obstruction on craniofacial growth in young Macaca fuscata monkeys. Am J Orthod Dentofacial Orthop, 1997, 111(1): 38-43.

[19]

Klingenberg CP, Leamy LJ, Routman EJ. Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometrics. Genetics, 2001, 157(2): 785-802.

[20]

Workman MS, Leamy LJ, Routman EJ. Analysis of quantitative trait locus effects on the size and shape of mandibular molars in mice. Genetics, 2002, 160(4): 1573-1586.

[21]

Schropp L, Wenzel A, Kostopoulos L. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. Int J Periodont Restor Dent, 2003, 23(4): 313-323.

[22]

Kreczi A, Proff P, Reicheneder C. Effects of hypodontia on craniofacial structures and mandibular growth pattern. Head Face Med, 2011, 7: 23.

[23]

Kohakura S, Kasai K, Ohno I. Relationship between maxillofacial morphology and morphological characteristics of vertical sections of the mandible obtained by CT scanning. J Nihon Univ Sch Dent, 1997, 39(2): 71-77.

[24]

Swasty D, Lee J, Huang JC. Cross-sectional human mandibular morphology as assessed in vivo by cone-beam computed tomography in patients with different vertical facial dimensions. Am J Orthod Dentofacial Orthop, 2011, 139(4 Suppl): e377-e389.

[25]

Yin W, Bian Z. The Gene Network Underlying Hypodontia. J Dent Res, 2015, 94(7): 878-885.

[26]

Ogaard B, Krogstad O. Craniofacial structure and soft tissue profile in patients with severe hypodontia. Am J Orthod Dentofacial Orthop, 1995, 108(5): 472-477.

[27]

Wisth PJ, Thunold K, Böe OE. The craniofacial morphology of individuals with hypodontia. Acta Odontol Scand, 1974, 32(4): 281-290.

[28]

Bartolo A, Calleja N, McDonald F. Dental anomalies in first-degree relatives of transposed canine probands. Int J Oral Sci, 2015, 7(3): 169-173.

[29]

Cheverud JM, Routman EJ, Irschick DJ. Pleiotropic effects of individual gene loci on mandibular morphology. Evolution, 1997, 51(6): 2006-2016.

[30]

Claes P, Liberton DK, Daniels K. Modeling 3D facial shape from DNA. PLoS Genet, 2014, 10(3): e1004224.

[31]

Bookstein FL. Morphometric tools for landmark data: geometry and biology, 1991 New York: Cambridge University Press

[32]

Slice DE. Modern morphometrics in physical anthropology, 2005 New York: Kluwer Press

[33]

Mitteroecker P, Gunz P. Advances in geometric morphometrics. Evol Biol, 2009, 36(2): 235-247.

[34]

Gahleitner A, Watzek G, Imhof H. Dental CT: imaging technique, anatomy, and pathologic conditions of the jaws. Eur Radiol, 2003, 13(2): 366-376.

[35]

Rohlf FJ. tpsUtil, file utility program, 2004 Stony Brook: Department of Ecology and Evolution, State University of New York

[36]

Rohlf FJ. tpsDig, 2006 Stony Brook: Department of Ecology and Evolution, State University of New York

[37]

Bookstein FL. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal, 1997, 1(3): 225-243.

[38]

Gunz P, Mitteroecker P. Semilandmarks: a method for quantifying curves and surfaces. Hystrix, 2013, 24(1): 103-109.

[39]

Rohlf FJ, Slice D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Biol, 1990, 39(1): 40-59.

[40]

Mitteroecker P, Gunz P, Bernhard M. Comparison of cranial ontogenetic trajectories among great apes and humans. J Hum Evol, 2004, 46(6): 679-697.

[41]

Mitteroecker P, Gunz P, Windhager S. A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix, 2013, 24(1): 59-66.

[42]

Good P. Permutation tests: a practical guide to resampling methods for testing hypotheses, 2000 New York: Springer

[43]

Mitteroecker P, Bookstein F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol Biol, 2011, 38(1): 100-114.

[44]

Ostler MS, Kokich VG. Alveolar ridge changes in patients congenitally missing mandibular second premolars. J Prosthet Dent, 1994, 71(2): 144-149.

[45]

Medio M, Yeh E, Popelut A. Wnt/β-catenin signaling and Msx1 promote outgrowth of the maxillary prominences. Front Physiol, 2012, 3: 375.

[46]

Leamy LJ, Routman EJ, Cheverud JM. A search for quantitative trait loci affecting asymmetry of mandibular characters in mice. Evolution, 1997, 51(3): 957-969.

[47]

Bauer N, Heckmann K, Sand A. Craniofacial growth patterns in patients with congenitally missing permanent teeth. J Orofac Orthop, 2009, 70(2): 139-151.

[48]

Bookstein FL, Streissguth AP, Sampson PD. Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. Neuroimage, 2002, 15(1): 233-251.

[49]

Hallgrímsson B, Brown JJ, Ford-Hutchinson AF. The brachymorph mouse and the developmental-genetic basis for canalization and morphological integration. Evol Dev, 2006, 8(1): 61-73.

[50]

Hermisson J, Wagner GP. The population genetic theory of hidden variation and genetic robustness. Genetics, 2004, 168(4): 2271-2284.

[51]

Mitteroecker P. The developmental basis of variational modularity: insights from quantitative genetics, morphometrics, and developmental biology. Evol Biol, 2009, 36(4): 377-385.

[52]

Ramler D, Mitteroecker P, Shama LN. Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback. J Evol Biol, 2014, 27(3): 497-507.

[53]

Thornhill R, Møller AP. Developmental stability, disease and medicine. Biol Rev Camb Philos Soc, 1997, 72(4): 497-548.

[54]

Schubert W, Kobienia BJ, Pollock RA. Cross-sectional area of the mandible. J Oral Maxillofac Surg, 1997, 55(7): 689-692.

[55]

Tsunori M, Mashita M, Kasai K. Relationship between facial types and tooth and bone characteristics of the mandible obtained by CT scanning. Angle Orthod, 1998, 68(6): 557-562.

[56]

Yu Q, Pan XG, Ji GP. The association between lower incisal inclination and morphology of the supporting alveolar bone—a cone-beam CT study. Int J Oral Sci, 2009, 1(4): 217-223.

[57]

de Souza LA, de Souza Picorelli Assis NM, Ribeiro RA. Assessment of mandibular posterior regional landmarks using cone-beam computed tomography in dental implant surgery. Ann Anat, 2016, 205: 53-59.

[58]

Bertl K. Alveolar bone remodelling after extraction of the deciduous tooth in patients with agenesis of the lower second premolar. A radiographic analysis. Clin Oral Implants Res, 2015, 26(S12): 45.

[59]

Edwards RW. Foreign bodies in the submandibular fossa. Oral Surg Oral Med Oral Pathol, 1949, 2(9): 1118-1121.

[60]

Stacy GC, Orth D. Perforation of the lingual alveolar plate in association with mandibular third molars. Report of a case. Oral Surg Oral Med Oral Pathol, 1964, 17: 586-591.

[61]

Angelopoulos C, Thomas SL, Thomas S. Comparison between digital panoramic radiography and cone-beam computed tomography for the identification of the mandibular canal as part of presurgical dental implant assessment. J Oral Maxillofac Surg, 2008, 66(10): 2130-2135.

[62]

Chan HL, Brooks SL, Fu JH. Cross-sectional analysis of the mandibular lingual concavity using cone beam computed tomography. Clin Oral Implants Res, 2011, 22(2): 201-206.

[63]

Chan HL, Benavides E, Yeh CY. Risk assessment of lingual plate perforation in posterior mandibular region: a virtual implant placement study using cone-beam computed tomography. J Periodontol, 2011, 82(1): 129-135.

[64]

Parnia F, Fard EM, Mahboub F. Tomographic volume evaluation of submandibular fossa in patients requiring dental implants. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010, 109(1): e32-e36.

[65]

Braut V, Bornstein MM, Kuchler U. Bone dimensions in the posterior mandible: a retrospective radiographic study using cone beam computed tomography. Part 2—analysis of edentulous sites. Int J Periodont Restor Dent, 2014, 34(5): 639-647.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/