Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement

Xian-Ju Xie , Dan Xing , Lin Wang , Han Zhou , Michael D Weir , Yu-Xing Bai , Hockin HK Xu

International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (1) : 24 -32.

PDF
International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (1) : 24 -32. DOI: 10.1038/ijos.2016.40
Article

Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement

Author information +
History +
PDF

Abstract

An orthodontic cement showing sustained release of calcium (Ca) and phosphate (P) ions may promote enamel remineralization. Fixed orthodontic attachments allow bacteria to accumulate causing enamel demineralization and white spot lesions. Dental cements formed from calcium phosphate (CaP) composites can release ions and prevent demineralization, however, these composites lack the required mechanical strength. Now, Hockin Xu at the University of Maryland, US, and colleagues report a nanoparticle-containing composite that shows sustained release of Ca/P ions over 14 days with an enamel bond strength similar to commercial orthodontic cements. The cement, formed from CaP nanoparticles mixed with a methacrylate-based resin, can be replenished with ions by placing it in Ca and P solutions, which may be possible using mouthwash. The CaP nanoparticle-based material was repeatedly re-charged with no observed decrease in ion release.

Keywords

bond strength / calcium phosphate nanoparticles / calcium phosphate ion rechargeability / long-term ion release / orthodontic cement / white spot lesions

Cite this article

Download citation ▾
Xian-Ju Xie, Dan Xing, Lin Wang, Han Zhou, Michael D Weir, Yu-Xing Bai, Hockin HK Xu. Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement. International Journal of Oral Science, 2016, 8(1): 24-32 DOI:10.1038/ijos.2016.40

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gorton J, Featherstone JDB. In-vivo inhibition of demineralization around orthodontic brackets. Am J Orthod Dentofac, 2003, 123(1): 10-14.

[2]

Boersma J, Van der Veen J, Bokhout M. Caries prevalence measured with QLF after treatment with fixed orthodontic appliances: influencing factors. Caries Res, 2005, 39(1): 41-47.

[3]

Willmot D. White spot lesions after orthodontic treatment. Semin Orthod, 2008, 14(3): 209-219.

[4]

Julien KC, Buschang PH, Campbell PM. Prevalence of white spot lesion formation during orthodontic treatment. Angle Orthod, 2013, 83(4): 641-647.

[5]

Lovrov S, Hertrich K, Hirschfelder U. Enamel demineralization during fixed orthodontic treatment—incidence and correlation to various oral-hygiene parameters. J Orofac Orthop, 2007, 68(5): 353-363.

[6]

Jurela A, Repic D, Pejda S. The effect of two different bracket types on the salivary levels of S mutans and S sobrinus in the early phase of orthodontic treatment. Angle Orthod, 2012, 83(1): 140-145.

[7]

Lombardo L, Ortan , Gorgun Ö. Changes in the oral environment after placement of lingual and labial orthodontic appliances. Prog Orthod, 2013, 14(1): 1-8.

[8]

Chapman JA, Roberts WE, Eckert GJ. Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am J Orthod Dentofac, 2010, 138(2): 188-194.

[9]

Tufekci E, Dixon JS, Gunsolley J. Prevalence of white spot lesions during orthodontic treatment with fixed appliances. Angle Orthod, 2011, 81(2): 206-210.

[10]

Gorton J, Featherstone JD. In vivo inhibition of demineralization around orthodontic brackets. Am J Orthod Dentofac, 2003, 123(1): 10-14.

[11]

Imazato S. Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent Mater J, 2009, 28(1): 11-19.

[12]

Li F, Chen J, Chai Z. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent, 2009, 37(4): 289-296.

[13]

Li F, Weir MD, Chen J. Comparison of quaternary ammonium-containing with nano-silver-containing adhesive in antibacterial properties and cytotoxicity. Dent Mater, 2013, 29(4): 450-461.

[14]

He L, Deng D, Zhou X. Novel tea polyphenol‐modified calcium phosphate nanoparticle and its remineralization potential. J Biomed Mater Res B, 2015, 103(8): 1525-1531.

[15]

Zhang K, Cheng L, Imazato S. Effects of dual antibacterial agents MDPB and nano-silver in primer on microcosm biofilm, cytotoxicity and dentine bond properties. J Dent, 2013, 41(5): 464-474.

[16]

Lim B-S, Ferracane J, Sakaguchi R. Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent Mater, 2002, 18(6): 436-444.

[17]

Irie M, Suzuki K, Watts D. Marginal gap formation of light-activated restorative materials: effects of immediate setting shrinkage and bond strength. Dent Mater, 2002, 18(3): 203-210.

[18]

Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater, 2005, 21(10): 962-970.

[19]

Atai M, Watts DC. A new kinetic model for the photopolymerization shrinkage-strain of dental composites and resin-monomers. Dent Mater, 2006, 22(8): 785-791.

[20]

Pashley DH, Tay FR. Aggressiveness of contemporary self-etching adhesives. Part II: etching effects on unground enamel. Dent Mater, 2001, 17(5): 430-444.

[21]

Tay FR, Pashley DH, Suh BI. Single-step adhesives are permeable membranes. J Dent, 2002, 30(7): 371-382.

[22]

Frankenberger R, Tay FR. Self-etch vs etch-and-rinse adhesives: effect of thermo-mechanical fatigue loading on marginal quality of bonded resin composite restorations. Dent Mater, 2005, 21(5): 397-412.

[23]

Lynch CD, Allen P. Management of the flabby ridge: using contemporary materials to solve an old problem. Brit Dent J, 2006, 200(5): 258-261.

[24]

Lynch CD, Frazier KB, McConnell RJ. Minimally invasive management of dental caries: contemporary teaching of posterior resin-based composite placement in US and Canadian dental schools. J Am Dent Assoc, 2011, 142(6): 612-620.

[25]

Sudjalim T, Woods M, Manton D. Prevention of white spot lesions in orthodontic practice: a contemporary review. Aust Dent J, 2006, 51(4): 284-289.

[26]

Rogers S, Chadwick B, Treasure E. Fluoride-containing orthodontic adhesives and decalcification in patients with fixed appliances: a systematic review. Am J Orthod Dentofac, 2010, 138(4): 390.e1-390.e8.

[27]

Enaia M, Bock N, Ruf S. White-spot lesions during multibracket appliance treatment: a challenge for clinical excellence. Am J Orthod Dentofac, 2011, 140(1): e17-e24.

[28]

Reynolds EC, Cai F, Cochrane NJ. Fluoride and casein phosphopeptide-amorphous calcium phosphate. J Dent Res, 2008, 87(4): 344-348.

[29]

Bailey DL, Adams GG, Tsao CE. Regression of post-orthodontic lesions by a remineralizing cream. J Dent Res, 2009, 88(12): 1148-1153.

[30]

Hamba H, Nikaido T, Inoue G. Effects of CPP-ACP with sodium fluoride on inhibition of bovine enamel demineralization: a quantitative assessment using micro-computed tomography. J Dent, 2011, 39(6): 405-413.

[31]

Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based Ca–PO4 cements. Dent Mater, 2003, 19(6): 558-566.

[32]

Regnault WF, Icenogle TB, Antonucci JM. Amorphous calcium phosphate/urethane methacrylate resin composites. I. Physicochemical characterization. J Mater Sci Mater Med, 2008, 19(2): 507-515.

[33]

Skrtic D, Antonucci JM, Eanes ED. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent Mater, 1996, 12(5): 295-301.

[34]

Langhorst S, O’Donnell J, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater, 2009, 25(7): 884-891.

[35]

Xu HH, Moreau JL, Sun L. Nanocomposite containing amorphous calcium phosphate nanoparticles for caries inhibition. Dent Mater, 2011, 27(8): 762-769.

[36]

Moreau JL, Sun L, Chow LC. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B, 2011, 98(1): 80-88.

[37]

Weir M, Chow L, Xu H. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res, 2012, 91(10): 979-984.

[38]

Melo MAS, Weir MD, Rodrigues LK. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater, 2013, 29(2): 231-240.

[39]

Zhang L, Weir MD, Hack G. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release. J Dent, 2015, 43(12): 1587-1595.

[40]

Zhang L, Weir MD, Chow LC. Novel rechargeable calcium phosphate dental nanocomposite. Dent Mater, 2016, 32(2): 285-293.

[41]

Boland EJ, MacDougall M, Carnes DL. In vitro cytotoxicity of a remineralizing resin-based calcium phosphate cement. Dent Mater, 2006, 22(4): 338-345.

[42]

Venz S, Dickens B. Modified surface-active monomers for adhesive bonding to dentin. J Dent Res, 1993, 72(3): 582-586.

[43]

Milward PJ, Adusei GO, Lynch CD. Improving some selected properties of dental polyacid-modified composite resins. Dent Mater, 2011, 27(10): 997-1002.

[44]

Skrtic D, Antonucci JM, Liu DW. Ethoxylated bisphenol dimethacrylate-based amorphous calcium phosphate composites. Acta Biomater, 2006, 2(1): 85-94.

[45]

Van Landuyt KL, Snauwaert J, De Munck J. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials, 2007, 28(26): 3757-3785.

[46]

Uysal T, Amasyali M, Ozcan S. Effect of antibacterial monomer-containing adhesive on enamel demineralization around orthodontic brackets: an in vivo study. Am J Orthod Dentofac, 2011, 139(5): 650-656.

[47]

Melo MA, Wu J, Weir MD. Novel antibacterial orthodontic cement containing quaternary ammonium monomer dimethylaminododecyl methacrylate. J Dent, 2014, 42(9): 1193-1201.

[48]

Scougall Vilchis RJ, Yamamoto S, Kitai N. Shear bond strength of a new fluoride-releasing orthodontic adhesive. Dental Mater J, 2007, 26(1): 45-51.

[49]

Scougall-Vilchis RJ, Ohashi S, Yamamoto K. Effects of 6 self-etching primers on shear bond strength of orthodontic brackets. Am J Orthod Dentofac, 2009, 135(4): 424.e1-424.e7.

[50]

Cheng HY, Chen CH, Li CL. Bond strength of orthodontic light-cured resin-modified glass ionomer cement. Eur J Orthodont, 2011, 33(2): 180-184.

[51]

Poosti M, Ramazanzadeh B, Zebarjad M. Shear bond strength and antibacterial effects of orthodontic composite containing TiO2 nanoparticles. Eur J Orthodont, 2013, 35(5): 676-679.

[52]

Tuncer C, Tuncer BB, Ulusoy Ç. Effect of fluoride-releasing light-cured resin on shear bond strength of orthodontic brackets. Am J Orthod Dentofac, 2009, 135(1): 14.e11-14.e16.

[53]

Moreau JL, Weir MD, Giuseppetti AA. Long‐term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles. J Biomed Mater Res B, 2012, 100(5): 1264-1273.

[54]

Paschos E, Kleinschrodt T, Clementino-Luedemann T. Effect of different bonding agents on prevention of enamel demineralization around orthodontic brackets. Am J Orthod Dentofac, 2009, 135(5): 603-612.

[55]

Meyer-Lueckel H, Hopfenmuller W, Von Klinggraff D. Microradiographic study on the effects of mucin-based solutions used as saliva substitutes on demineralised bovine enamel in vitro. Arch Oral Biol, 2006, 51(7): 541-547.

[56]

Banomyong D, Palamara JE, Messer HH. Sealing ability of occlusal resin composite restoration using four restorative procedures. Eur J Oral Sci, 2008, 116(6): 571-578.

[57]

Reynolds I. A review of direct orthodontic bonding. Br J Orthodont, 1975, 2: 171-178.

[58]

Pashley DH, Tay FR, Carvalho RM. From dry bonding to water-wet bonding to ethanol-wet bonding. A review of the interactions between dentin matrix and solvated resins using a macromodel of the hybrid layer. Am J Dent, 2007, 20(1): 7.

[59]

Finer Y, Santerre J. The influence of resin chemistry on a dental composite's biodegradation. J Biomed Mate Res A, 2004, 69(2): 233-246.

[60]

Takahashi M, Nakajima M, Hosaka K. Long-term evaluation of water sorption and ultimate tensile strength of HEMA-containing/-free one-step self-etch adhesives. J Dent, 2011, 39(7): 506-512.

[61]

Park J, Eslick J, Ye Q. The influence of chemical structure on the properties in methacrylate-based dentin adhesives. Dent Mater, 2011, 27(11): 1086-1093.

[62]

Profeta A, Mannocci F, Foxton R. Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin–dentin interfaces. Dent Mater, 2013, 29(7): 729-741.

[63]

Thylstrup A, Fejerskov O. Textbook of Clinical Cariology, 1994 Copenhagen: Munksgaard

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/