New strategies against drug resistance to herpes simplex virus

Yu-Chen Jiang , Hui Feng , Yu-Chun Lin , Xiu-Rong Guo

International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (1) : 1 -6.

PDF
International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (1) : 1 -6. DOI: 10.1038/ijos.2016.3
Article

New strategies against drug resistance to herpes simplex virus

Author information +
History +
PDF

Abstract

So-called “Janus” drugs with two molecular “faces” may help address the pressing need for new treatments for herpes simplex virus (HSV). The emergence of resistance to common antiviral drugs such as acyclovir is an increasing problem, especially for patients with weakened immune systems. A team led by Yu-Chen Jiang at Sichuan University, and Hui Feng, Central South University, Changsha, review key strategies for new ways to halt the multiplication of HSV. One of the most promising involves drugs that, like acyclovir, mimic the molecular components of DNA and therefore interfere with the manufacture of viral DNA. Two key DNA components are purines and pyrimidines. The Janus drug molecules have one side that mimics purines while the other side mimics pyrimidines, allowing a double-hit against virus multiplication.

Keywords

new strategies / drug resistance / herpes simplex virus / Janus-type nucleoside analogues / lethal mutagenesis

Cite this article

Download citation ▾
Yu-Chen Jiang, Hui Feng, Yu-Chun Lin, Xiu-Rong Guo. New strategies against drug resistance to herpes simplex virus. International Journal of Oral Science, 2016, 8(1): 1-6 DOI:10.1038/ijos.2016.3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Howard CR, Fletcher NF. Emerging virus diseases: can we ever expect the unexpected?. Emerg Microbes Infect, 2012, 1(12): e46.

[2]

Gilbert C, Bestman-Smith J, Boivin G. Resistance of herpesviruses to antiviral drugs: clinical impacts and molecular mechanisms. Drug Resist Updat, 2002, 5(2): 88-114.

[3]

Wilson SS, Fakioglu E, Herold BC. Novel approaches in fighting herpes simplex virus infections. Expert Rev Anti Infect Ther, 2009, 7(5): 559-568.

[4]

Markus A, Grigoryan S, Sloutskin A. Varicella-zoster virus (VZV) infection of neurons derived from human embryonic stem cells: direct demonstration of axonal infection, transport of VZV, and productive neuronal infection. J Virol, 2011, 85(13): 6220-6233.

[5]

Burrel S, Ait-Arkoub Z, Voujon D. Molecular characterization of herpes simplex virus 2 strains by analysis of microsatellite polymorphism. J Clin Microbiol, 2013, 51(11): 3616-3623.

[6]

Galdiero S, Falanga A, Tarallo R. Peptide inhibitors against herpes simplex virus infections. J Pept Sci, 2013, 19(3): 148-158.

[7]

Jones M, Dry IR, Frampton D. RNA-seq analysis of host and viral gene expression highlights interaction between varicella zoster virus and keratinocyte differentiation. PLoS Pathog, 2014, 10(1): e1003896.

[8]

Suazo PA, Ibañez FJ, Retamal-Díaz AR. Evasion of early antiviral responses by herpes simplex viruses. Mediators Inflamm, 2015, 2015: 593757.

[9]

Matsuura M, Takemoto M, Yamanishi K. Human herpesvirus 6 major immediate early promoter has strong activity in T cells and is useful for heterologous gene expression. Virol J, 2011, 8: 9.

[10]

Higashimoto Y, Ohta A, Nishiyama Y. Development of a human herpesvirus 6 species-specific immunoblotting assay. J Clin Microbiol, 2012, 50(4): 1245-1251.

[11]

Schnepf N, Scieux C, Resche-Riggon M. Fully automated quantification of cytomegalovirus (CMV) in whole blood with the new sensitive Abbott RealTime CMV assay in the era of the CMV international standard. J Clin Microbiol, 2013, 51(7): 2096-2102.

[12]

Hill JA, Boeckh MJ, Sedlak RH. Human herpesvirus 6 can be detected in cerebrospinal fluid without associated symptoms after allogeneic hematopoietic cell transplantation. J Clin Virol, 2014, 61(2): 289-292.

[13]

Aichelburg MC, Weseslindtner L, Mandorfer M. Association of CMV-specific T cell-mediated immunity with CMV DNAemia and development of CMV disease in HIV-1-infected individuals. PLoS One, 2015, 10(8): e0137096.

[14]

Espinoza JL, Takami A, Trung LQ. Resveratrol prevents EBV transformation and inhibits the outgrowth of EBV-immortalized human B cells. PLoS One, 2012, 7(12): e51306.

[15]

Antsiferova O, Müller A, Rämer PC. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. PLoS Pathog, 2014, 10(8): e1004333.

[16]

Wang HB, Zhang H, Zhang JP. Neuropilin 1 is an entry factor that promotes EBV infection of nasopharyngeal epithelial cells. Nat Commun, 2015, 6: 6240.

[17]

Lee M, Son M, Ryu E. Quercetin-induced apoptosis prevents EBV infection. Oncotarget, 2015, 6(14): 12603-12624.

[18]

De Clercq E. Antivirals: past, present and future. Biochem Pharmacol, 2013, 85(6): 727-744.

[19]

De Clercq E. A 40-year journey in search of selective antiviral chemotherapy. Annu Rev Pharmacol Toxicol, 2011, 51: 1-24.

[20]

Czartoski T, Liu C, Koelle DM. Fulminant, acyclovir-resistant, herpes simplex virus type 2 hepatitis in an immunocompetent woman. J Clin Microbiol, 2006, 44(4): 1584-1586.

[21]

Schnitzler P, Koch C, Reichling J. Susceptibility of drug-resistant clinical herpes simplex virus type 1 strains to essential oils of ginger, thyme, hyssop, and sandalwood. Antimicrob Agents Chemother, 2007, 51(5): 1859-1862.

[22]

Piret J, Boivin G. Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother, 2011, 55(2): 459-472.

[23]

Toriyama K, Inoue T, Suzuki T. Necrotizing keratitis caused by acyclovir-resistant herpes simplex virus. Case Rep Ophthalmol, 2014, 5(3): 325-328.

[24]

Schaeffer HJ, Beauchamp L, de Miranda P. 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature, 1978, 272(5654): 583-585.

[25]

Sáez-Llorens X, Yogev R, Arguedas A. Pharmacokinetics and safety of famciclovir in children with herpes simplex or varicella-zoster virus infection. Antimicrob Agents Chemother, 2009, 53(5): 1912-1920.

[26]

Ogungbenro K, Matthews I, Looby M. Population pharmacokinetics and optimal design of paediatric studies for famciclovir. Br J Clin Pharmacol, 2009, 68(4): 546-560.

[27]

Cattamanchi A, Saracino M, Selke S. Treatment with valacyclovir, famciclovir, or antiretrovirals reduces human herpesvirus-8 replication in HIV-1 seropositive men. J Med Virol, 2011, 83(10): 1696-1703.

[28]

Janoly-Dumenil A, Rouvet I, Bleyzac N. A pharmacodynamic model of ganciclovir antiviral effect and toxicity for lymphoblastoid cells suggests a new dosing regimen to treat cytomegalovirus infection. Antimicrob Agents Chemother, 2012, 56(7): 3732-3738.

[29]

Bedel AN, Hemmelgarn TS, Kohli R. Retrospective review of the incidence of cytomegalovirus infection and disease after liver transplantation in pediatric patients: comparison of prophylactic oral ganciclovir and oral valganciclovir. Liver Transpl, 2012, 18(3): 347-354.

[30]

Drake AL, Roxby AC, Ongecha-Owuor F. Valacyclovir suppressive therapy reduces plasma and breast milk HIV-1 RNA levels during pregnancy and postpartum: a randomized trial. J Infect Dis, 2012, 205(3): 366-375.

[31]

Gopal MG, Shannoma, Kumar BCS. A comparative study to evaluate the efficacy and safety of acyclovir and famciclovir in the management of herpes zoster. J Clin Diagn Res, 2013, 7(12): 2904-2907.

[32]

Perti T, Saracino M, Baeten JM. High-dose valacyclovir decreases plasma HIV-1 RNA more than standard-dose acyclovir in persons coinfected with HIV-1 and HSV-2: a randomized crossover trial. J Acquir Immune Defic Syndr, 2013, 63(2): 201-208.

[33]

Gokulgandhi MR, Barot M, Bagui M. Transporter-targeted lipid prodrugs of cyclic cidofovir: a potential approach for the treatment of cytomegalovirus retinitis. J Pharm Sci, 2012, 101(9): 3249-3263.

[34]

Momper JD, Zhao Y, Shapiro R. Pharmacokinetics of low-dose cidofovir in kidney transplant recipients with BK virus infection. Transpl Infect Dis, 2013, 15(1): 34-41.

[35]

Vossen MG, Gattringer KB, Jäger W. Single-dose pharmacokinetics of cidofovir in continuous venovenous hemofiltration. Antimicrob Agents Chemother, 2014, 58(4): 1952-1955.

[36]

Gilbert C, Azzi A, Goyette N. Recombinant phenotyping of cytomegalovirus UL54 mutations that emerged during cell passages in the presence of either ganciclovir or foscarnet. Antimicrob Agents Chemother, 2011, 55(9): 4019-4027.

[37]

Minces LR, Nguyen MH, Mitsani D. Ganciclovir-resistant cytomegalovirus infections among lung transplant recipients are associated with poor outcomes despite treatment with foscarnet-containing regimens. Antimicrob Agents Chemother, 2014, 58(1): 128-135.

[38]

De Clercq E, Holý A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat Rev Drug Discov, 2005, 4(11): 928-940.

[39]

De Clercq E. The discovery of antiviral agents: ten different compounds, ten different stories. Med Res Rev, 2008, 28(6): 929-953.

[40]

Castelo-Soccio L, Bernardin R, Stern J. Successful treatment of acyclovir-resistant herpes simplex virus with intralesional cidofovir. Arch Dermatol, 2010, 146(2): 124-126.

[41]

Strand M, Islam K, Edlund K. 2-[4,5-Difluoro-2-(2-fluorobenzoylamino)-benzoylamino]benzoic acid, an antiviral compound with activity against acyclovir-resistant isolates of herpes simplex virus types 1 and 2. Antimicrob Agents Chemother, 2012, 56(11): 5735-5743.

[42]

Pan D, Coen DM. Quantification and analysis of thymidine kinase expression from acyclovir-resistant G-string insertion and deletion mutants in herpes simplex virus-infected cells. J Virol, 2012, 86(8): 4518-4526.

[43]

Turner LD, Beckingsale P. Acyclovir-resistant herpetic keratitis in a solid-organ transplant recipient on systemic immunosuppression. Clin Ophthalmol, 2013, 7: 229-232.

[44]

Kakiuchi S, Nonoyama S, Wakamatsu H. Neonatal herpes encephalitis caused by a virologically confirmed acyclovir-resistant herpes simplex virus 1 strain. J Clin Microbiol, 2013, 51(1): 356-359.

[45]

Pan D, Kaye SB, Hopkins M. Common and new acyclovir resistant herpes simplex virus-1 mutants causing bilateral recurrent herpetic keratitis in an immunocompetent patient. J Infect Dis, 2014, 209(3): 345-349.

[46]

Latief MA, Chikama T, Ko JA. Inactivation of acyclovir-sensitive and -resistant strains of herpes simplex virus type 1 in vitro by photodynamic antimicrobial chemotherapy. Mol Vis, 2015, 21: 532-537.

[47]

Langston AA, Redei I, Caliendo AM. Development of drug-resistant herpes simplex virus infection after haploidentical hematopoietic progenitor cell transplantation. Blood, 2002, 99(3): 1085-1088.

[48]

Morfin F, Thouvenot D. Herpes simplex virus resistance to antiviral drugs. J Clin Virol, 2003, 26(1): 29-37.

[49]

Watson-Jones D, Wald A, Celum C. Use of acyclovir for suppression of human immunodeficiency virus infection is not associated with genotypic evidence of herpes simplex virus type 2 resistance to acyclovir: analysis of specimens from three phase III trials. J Clin Microbiol, 2010, 48(10): 3496-3503.

[50]

Andrei G, Topalis D, Fiten P. In vitro-selected drug-resistant varicella-zoster virus mutants in the thymidine kinase and DNA polymerase genes yield novel phenotype-genotype associations and highlight differences between antiherpesvirus drugs. J Virol, 2012, 86(5): 2641-2652.

[51]

Karaba AH, Cohen LK, Glaubach T. Longitudinal characterization of herpes simplex virus (HSV) isolates acquired from different sites in an immune-compromised child: a new HSV thymidine kinase mutation associated with resistance. J Pediatric Infect Dis Soc, 2012, 1(2): 116-124.

[52]

Burrel S, Deback C, Agut H. Genotypic characterization of UL23 thymidine kinase and UL30 DNA polymerase of clinical isolates of herpes simplex virus: natural polymorphism and mutations associated with resistance to antivirals. Antimicrob Agents Chemother, 2010, 54(11): 4833-4842.

[53]

Bacon TH, Levin MJ, Leary JJ. Herpes simplex virus resistance to acyclovir and penciclovir after two decades of antiviral therapy. Clin Microbiol Rev, 2003, 16(1): 114-128.

[54]

Sarisky RT, Bartus HR, Dennis SA. Absence of rapid selection for acyclovir or penciclovir resistance following suboptimal oral prodrug therapy of HSV-infected mice. BMC Infect Dis, 2001, 1: 24.

[55]

Sarisky RT, Quail MR, Clark PE. Characterization of herpes simplex viruses selected in culture for resistance to penciclovir or acyclovir. J Virol, 2001, 75(4): 1761-1769.

[56]

Betz UA, Fischer R, Kleymann G. Potent in vivo antiviral activity of the herpes simplex virus primase-helicase inhibitor BAY 57-1293. Antimicrob Agents Chemother, 2002, 46(6): 1766-1772.

[57]

Duan J, Liuzzi M, Paris W. Oral bioavailability and in vivo efficacy of the helicase-primase inhibitor BILS 45 BS against acyclovir-resistant herpes simplex virus type 1. Antimicrob Agents Chemother, 2003, 47(6): 1798-1804.

[58]

Kaufman HE, Varnell ED, Gebhardt BM. Efficacy of a helicase-primase inhibitor in animal models of ocular herpes simplex virus type 1 infection. J Ocul Pharmacol Ther, 2008, 24(1): 34-42.

[59]

Katsumata K, Weinberg A, Chono K. Susceptibility of herpes simplex virus isolated from genital herpes lesions to ASP2151, a novel helicase-primase inhibitor. Antimicrob Agents Chemother, 2012, 56(7): 3587-3591.

[60]

Shadrick WR, Ndjomou J, Kolli R. Discovering new medicines targeting helicases: challenges and recent progress. J Biomol Screen, 2013, 18(7): 761-781.

[61]

Mohni KN, Smith S, Dee AR. Herpes simplex virus type 1 single strand DNA binding protein and helicase/primase complex disable cellular ATR signaling. PLoS Pathog, 2013, 9(10): e1003652.

[62]

Katsumata K, Chono K, Kato K. Pharmacokinetics and pharmacodynamics of ASP2151, a helicase-primase inhibitor, in a murine model of herpes simplex virus infection. Antimicrob Agents Chemother, 2013, 57(3): 1339-1346.

[63]

Weller SK, Kuchta RD. The DNA helicase-primase complex as a target for herpes viral infection. Expert Opin Ther Targets, 2013, 17(10): 1119-1132.

[64]

Biswas S, Sukla S, Goldner T. Pharmacokinetics-pharmacodynamics of the helicase-primase inhibitor pritelivir following treatment of wild-type or pritelivir-resistant virus infection in a murine herpes simplex virus 1 infection model. Antimicrob Agents Chemother, 2014, 58(7): 3843-3852.

[65]

Kleymann G, Fischer R, Betz UA. New helicase-primase inhibitors as drug candidates for the treatment of herpes simplex disease. Nat Med, 2002, 8(4): 392-398.

[66]

Baumeister J, Fischer R, Eckenberg P. Superior efficacy of helicase-primase inhibitor BAY 57-1293 for herpes infection and latency in the guinea pig model of human genital herpes disease. Antivir Chem Chemother, 2007, 18(1): 35-48.

[67]

Biswas S, Jennens L, Field HJ. The helicase primase inhibitor, BAY 57-1293 shows potent therapeutic antiviral activity superior to famciclovir in BALB/c mice infected with herpes simplex virus type 1. Antiviral Res, 2007, 75(1): 30-35.

[68]

Tyring S, Wald A, Zadeikis N. ASP2151 for the treatment of genital herpes: a randomized, double-blind, placebo- and valacyclovir-controlled, dose-finding study. J Infect Dis, 2012, 205(7): 1100-1110.

[69]

Astellas A . Phase 1, randomized, double-blind, multiple dose, multi-center study to compare the safety of ASP2151 to valacylcovir and placebo in healthy male and female subjects. Available at http://ichgcp.net/clinical-trials-registry/NCT00870441 accessed 21 January 2013.

[70]

Vo TS, Ngo DH, Ta QV. Marine organisms as a therapeutic source against herpes simplex virus infection. Eur J Pharm Sci, 2011, 44(1/2): 11-20.

[71]

Namazi R, Zabihollahi R, Behbahani M. Inhibitory activity of avicennia marina, a medicinal plant in persian folk medicine, against HIV and HSV. Iran J Pharm Res, 2013, 12(2): 435-443.

[72]

Zhong MG, Xiang YF, Qiu XX. Natural products as a source of anti-herpes simplex virus agents. RSC Adv, 2013, 3(2): 313-328.

[73]

Vadlapudi AD, Vadlapatla RK, Mitra AK. Update on emerging antivirals for the management of herpes simplex virus infections: a patenting perspective. Recent Pat Antiinfect Drug Discov, 2013, 8(1): 55-67.

[74]

Pei Y, Du Q, Liao PY. Notoginsenoside ST-4 inhibits virus penetration of herpes simplex virus in vitro. J Asian Nat Prod Res, 2011, 13(6): 498-504.

[75]

Cheng HY, Lin TC, Yang CM. Mechanism of action of the suppression of herpes simplex virus type 2 replication by pterocarnin A. Microbes Infect, 2004, 6(8): 738-744.

[76]

Cheng HY, Lin TC, Yang CM. Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. J Antimicrob Chemother, 2004, 53(4): 577-583.

[77]

Perry NB, Blunt JW, Munro MHG. Mycalamide A, an antiviral compound from a New Zealand sponge of the genus Mycale. J Am ChemSoc, 1988, 110(14): 4850-4851.

[78]

Perry NB, Blunt JW, Munro MHG. Antiviral and antitumor agents from a New Zealand sponge, Mycale sp. 2. Structures and solution conformations of mycalamides A and B. J Org Chem, 1990, 55(1): 223-227.

[79]

Crotty S, Maag D, Arnold JJ. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med, 2000, 6(12): 1375-1379.

[80]

Crotty S, Cameron CE, Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci USA, 2001, 98(12): 6895-6900.

[81]

Chen P, Shakhnovich EI. Lethal mutagenesis in viruses and bacteria. Genetics, 2009, 183(2): 639-650.

[82]

Martin G, Gandon S. Lethal mutagenesis and evolutionary epidemiology. Philos Trans R Soc Lond B Biol Sci, 2010, 365(1548): 1953-1963.

[83]

Fox EJ, Loeb LA. Lethal mutagenesis: targeting the mutator phenotype in cancer. Semin Cancer Biol, 2010, 20(5): 353-359.

[84]

Moreno H, Grande-Pérez A, Domingo E. Arenaviruses and lethal mutagenesis. Prospects for new ribavirin-based interventions. Viruses, 2012, 4(11): 2786-2805.

[85]

Dapp MJ, Patterson SE, Mansky LM. Back to the future: revisiting HIV-1 lethal mutagenesis. Trends Microbiol, 2013, 21(2): 56-62.

[86]

Bull JJ, Joyce P, Gladstone E. Empirical complexities in the genetic foundations of lethal mutagenesis. Genetics, 2013, 195(2): 541-552.

[87]

Ortega-Prieto AM, Sheldon J, Grande-Pérez A. Extinction of hepatitis C virus by ribavirin in hepatoma cells involves lethal mutagenesis. PLoS One, 2013, 8(8): e71039.

[88]

Bonnac LF, Mansky LM, Patterson SE. Structure-activity relationships and design of viral mutagens and application to lethal mutagenesis. J Med Chem, 2013, 56(23): 9403-9414.

[89]

Pauly MD, Lauring AS. Effective lethal mutagenesis of influenza virus by three nucleoside analogs. J Virol, 2015, 89(7): 3584-3597.

[90]

Crotty S, Cameron C, Andino R. Ribavirin's antiviral mechanism of action: lethal mutagenesis?. J Mol Med, 2002, 80(2): 86-95.

[91]

Graci JD, Cameron CE. Therapeutically targeting RNA viruses via lethal mutagenesis. Future Virol, 2008, 3(6): 553-566.

[92]

Lauring AS, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog, 2010, 6(7): e1001005.

[93]

Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev, 2012, 76(2): 159-216.

[94]

Cuevas JM, González-Candelas F, Moya A. Effect of ribavirin on the mutation rate and spectrum of hepatitis C virus in vivo. J Virol, 2009, 83(11): 5760-5764.

[95]

Sidwell RW, Huffman JH, Khare GP. Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science, 1972, 177(4050): 705-706.

[96]

Rawson JM, Heineman RH, Beach LB. 5,6-Dihydro-5-aza-2'-deoxycytidine potentiates the anti-HIV-1 activity of ribonucleotide reductase inhibitors. Bioorg Med Chem, 2013, 21(22): 7222-7228.

[97]

Li D, Fedeles BI, Singh V. Tautomerism provides a molecular explanation for the mutagenic properties of the anti-HIV nucleoside 5-aza-5,6-dihydro-2'-deoxycytidine. Proc Natl Acad Sci USA, 2014, 111(32): E3252-E3259.

[98]

Peng CS, Fedeles BI, Singh V. Two-dimensional IR spectroscopy of the anti-HIV agent KP1212 reveals protonated and neutral tautomers that influence pH-dependent mutagenicity. Proc Natl Acad Sci USA, 2015, 112(11): 3229-3234.

[99]

Harris KS, Brabant W, Styrchak S. KP-1212/1461, a nucleoside designed for the treatment of HIV by viral mutagenesis. Antiviral Res, 2005, 67(1): 1-9.

[100]

Anon. Nove anti-HIV agent enters Phase IIa clinical trial. Expert Rev Anti Infect Ther 2007; 5 (4): 540–541.

[101]

Yang HZ, Pan MY, Jiang DW. Synthesis of Janus type nucleoside analogues and their preliminary bioactivity. Org Biomol Chem, 2011, 9(5): 1516-1522.

[102]

Zhao H, Huang W, Wu X. Synthesis of a complete Janus-type guanosine-cytosine base and its 2'-deoxyribonucleoside. Chem Lett, 2011, 40(7): 684-686.

[103]

Pan MY, Hang W, Zhao XJ. Janus-type AT nucleosides: synthesis, solid and solution state structures. Org Biomol Chem, 2011, 9(16): 5692-5702.

[104]

Zhao H, Huang W, Wu X. Different superstructures formed by Janus-type nucleosides. Chem Commun (Camb), 2012, 48(49): 6097-6099.

[105]

Zhao H, He S, Yang M. Micro-flowers changing to nano-bundle aggregates by translocation of the sugar moiety in Janus TA nucleosides. Chem Commun (Camb), 2013, 49(36): 3742-3744.

[106]

Zhao H, Guo X, He S. Complex self-assembly of pyrimido[4,5-d]pyrimidine nucleoside supramolecular structures. Nat Commun, 2014, 5: 3108.

[107]

He S, Zhao H, Guo X. The readout of base-pair information in adenine-thymine α-D-Arabinonucleosides. Chemistry, 2014, 20(47): 15473-15481.

[108]

Zhao H, Feng H, Liu D. Self-assembling monomeric nucleoside molecular nanoparticles loaded with 5-FU enhancing therapeutic efficacy against oral cancer. ACS Nano, 2015, 9(10): 9638-9651.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/