Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis

Jane Park , Bhumika Shokeen , Susan K Haake , Renate Lux

International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (3) : 138 -144.

PDF
International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (3) : 138 -144. DOI: 10.1038/ijos.2016.27
Article

Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis

Author information +
History +
PDF

Abstract

Different strains of pathogenic bacteria rely on distinct interactions to anchor themselves firmly into oral ‘biofilm’ communities. The microbe Fusobacterium nucleatum is a major component of these densely populated bacterial societies. This species is not harmful, but can mediate recruitment of disease-causing Porphyromonas gingivalis bacteria into biofilms. Renate Lux and colleagues at the University of California at Los Angeles have demonstrated that various strains of P. gingivalis apparently latch onto different proteins on the surface of F. nucleatum. Previous studiesidentified the protein Fap2 as a binding target for P. gingivalis, but Lux and colleagues found at least one strain that relies on a different protein and found evidence for other as yet unidentified protein ‘anchors’. Identifying the proteins recognized by the most virulent P. gingivalis strains could lead to therapeutics that selectively block these interactions.

Keywords

adhesin / biofilm / coaggregation / Fusobacterium nucleatum / Porphyromonas gingivalis

Cite this article

Download citation ▾
Jane Park, Bhumika Shokeen, Susan K Haake, Renate Lux. Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis. International Journal of Oral Science, 2016, 8(3): 138-144 DOI:10.1038/ijos.2016.27

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersen RN, Ganeshkumar N, Kolenbrander PE. Helicobacter pylori adheres selectively to Fusobacterium spp. Oral Microbiol Immunol, 1998, 13(1): 51-54.

[2]

Kolenbrander PE, Andersen RN, Moore LV. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect Immun, 1989, 57(10): 3194-3203.

[3]

Kolenbrander PE, Parrish KD, Andersen RN. Intergeneric coaggregation of oral Treponema spp. with Fusobacterium spp. and intrageneric coaggregation among Fusobacterium spp. Infect Immun, 1995, 63(12): 4584-4588.

[4]

Berezow AB, Darveau RP. Microbial shift and periodontitis. Periodontol 2000, 2011, 55(1): 36-47.

[5]

Han YW, Wang X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J Dent Res, 2013, 92(6): 485-491.

[6]

Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol, 2015, 23: 141-147.

[7]

Swidsinski A, Dörffel Y, Loening-Baucke V. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut, 2011, 60(1): 34-40.

[8]

Témoin S, Chakaki A, Askari A. Identification of oral bacterial DNA in synovial fluid of patients with arthritis with native and failed prosthetic joints. J Clin Rheumatol, 2012, 18(3): 117-121.

[9]

Chaim W, Mazor M. Intraamniotic infection with fusobacteria. Arch Gynecol Obstet, 1992, 251(1): 1-7.

[10]

Han YW, Fardini Y, Chen C. Term stillbirth caused by oral Fusobacterium nucleatum. Obstet Gynecol, 2010, 115(2 Pt 2): 442-445.

[11]

Bradshaw DJ, Marsh PD, Watson GK. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun, 1998, 66(10): 4729-4732.

[12]

Kaplan A, Kaplan CW, He X. Characterization of aid1, a novel gene involved in Fusobacterium nucleatum interspecies interactions. Microb Ecol, 2014, 68(2): 379-387.

[13]

Kaplan CW, Lux R, Haake SK. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol Microbiol, 2009, 71(1): 35-47.

[14]

Coppenhagen-Glazer S, Sol A, Abed J. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect Immun, 2015, 83(3): 1104-1113.

[15]

Henderson IR, Navarro-Garcia F, Desvaux M. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev, 2004, 68(4): 692-744.

[16]

Bullard B, Lipski S, Lafontaine ER. Regions important for the adhesin activity of Moraxella catarrhalis Hag. BMC Microbiol, 2007, 7: 65.

[17]

Lipski SL, Akimana C, Timpe JM. The Moraxella catarrhalis autotransporter McaP is a conserved surface protein that mediates adherence to human epithelial cells through its N-terminal passenger domain. Infect Immun, 2007, 75(1): 314-324.

[18]

Heras B, Totsika M, Peters KM. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci USA, 2014, 111(1): 457-462.

[19]

Klemm P, Hjerrild L, Gjermansen M. Structure-function analysis of the self-recognizing antigen 43 autotransporter protein from Escherichia coli. Mol Microbiol, 2004, 51(1): 283-296.

[20]

Sherlock O, Schembri MA, Reisner A. Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J Bacteriol, 2004, 186(23): 8058-8065.

[21]

Valle J, Mabbett AN, Ulett GC. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli. J Bacteriol, 2008, 190(12): 4147-4161.

[22]

Capecchi B, Adu-Bobie J, Di Marcello F. Neisseria meningitidis NadA is a new invasin which promotes bacterial adhesion to and penetration into human epithelial cells. Mol Microbiol, 2005, 55(3): 687-698.

[23]

Kaplan CW, Lux R, Huynh T. Fusobacterium nucleatumapoptosis-inducing outer membrane protein. J Dent Res, 2005, 84(8): 700-704.

[24]

Kaplan CW, Ma X, Paranjpe A. Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes. Infect Immun, 2010, 78(11): 4773-4778.

[25]

Cisar JO, Kolenbrander PE, McIntire FC. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun, 1979, 24(3): 742-752.

[26]

Kolenbrander PE, Andersen RN. Inhibition of coaggregation between Fusobacterium nucleatum and Porphyromonas (Bacteroides) gingivalis by lactose and related sugars. Infect Immun, 1989, 57(10): 3204-3209.

[27]

Crowley PJ, Fischlschweiger W, Coleman SE. Intergeneric bacterial coaggregations involving mutans streptococci and oral actinomyces. Infect Immun, 1987, 55(11): 2695-2700.

[28]

Jakubovics NS, Strömberg N, van Dolleweerd CJ. Differential binding specificities of oral streptococcal antigen I/II family adhesins for human or bacterial ligands. Mol Microbiol, 2005, 55(5): 1591-1605.

[29]

Kolenbrander PE, Inouye Y, Holdeman LV. New Actinomyces and Streptococcus coaggregation groups among human oral isolates from the same site. Infect Immun, 1983, 41(2): 501-506.

[30]

Eke PI, Rotimi VO, Laughon BE. Coaggregation of black-pigmented Bacteroides species with other oral bacteria. J Med Microbiol, 1989, 28(1): 1-4.

[31]

Kolenbrander PE, Andersen RN, Moore LV. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol, 1990, 56(12): 3890-3894.

[32]

Noguchi N, Noiri Y, Narimatsu M. Identification and localization of extraradicular biofilm-forming bacteria associated with refractory endodontic pathogens. Appl Environ Microbiol, 2005, 71(12): 8738-8743.

[33]

Ximénez-Fyvie LA, Haffajee AD, Socransky SS. Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J Clin Periodontol, 2000, 27(10): 722-732.

[34]

Lamont RJ, Hersey SG, Rosan B. Characterization of the adherence of Porphyromonas gingivalis to oral streptococci. Oral Microbiol Immunol, 1992, 7: 193-197.

[35]

Kinder SA, Holt SC. Characterization of coaggregation between Bacteroides gingivalis T22 and Fusobacterium nucleatum T18. Infect Immun, 1989, 57(11): 3425-3433.

[36]

Lamont RJ, Chan A, Belton CM. Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun, 1995, 63(10): 3878-3885.

[37]

Ansai T, Yamashita Y, Awano S. A murC gene in Porphyromonas gingivalis 381. Microbiology, 1995, 141(Pt 9): 2047-2052.

[38]

Shah HN, Williams RA, Bowden GH. Comparison of the biochemical properties of Bacteroides melaninogenicus from human dental plaque and other sites. J Appl Bacteriol, 1976, 41(3): 473-495.

[39]

Kinder SA, Holt SC. Coaggregation between bacterial species. Meth Enzymol, 1994, 236: 254-270.

[40]

Saito Y, Fujii R, Nakagawa KI. Stimulation of Fusobacterium nucleatum biofilm formation by Porphyromonas gingivalis. Oral Microbiol Immunol, 2008, 23(1): 1-6.

[41]

Takemoto T, Ozaki M, Shirakawa M. Purification of arginine-sensitive hemagglutinin from Fusobacterium nucleatum and its role in coaggregation. J Periodont Res, 1993, 28(1): 21-26.

[42]

Shaniztki B, Hurwitz D, Smorodinsky N. Identification of a Fusobacterium nucleatum PK1594 galactose-binding adhesin which mediates coaggregation with periopathogenic bacteria and hemagglutination. Infect Immun, 1997, 65(12): 5231-5237.

[43]

Becker P, Hufnagle W, Peters G. Detection of differential gene expression in biofilm-forming versus planktonic populations of Staphylococcus aureus using micro-representational-difference analysis. Appl Environ Microbiol, 2001, 67(7): 2958-2965.

[44]

Lo A, Seers C, Dashper S. FimR and FimS: biofilm formation and gene expression in Porphyromonas gingivalis. J Bacteriol, 2010, 192(5): 1332-1343.

[45]

Resch A, Rosenstein R, Nerz C. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol, 2005, 71(5): 2663-2676.

[46]

Biyikoğlu B, Ricker A, Diaz PI. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development. Anaerobe, 2012, 18(4): 459-470.

[47]

Kolenbrander PE, Williams BL. Prevalence of viridans streptococci exhibiting lactose-inhibitable coaggregation with oral actinomycetes. Infect Immun, 1983, 41(2): 449-452.

[48]

Lamont RJ, El-Sabaeny A, Park Y. Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology, 2002, 148(Pt 6): 1627-1636.

[49]

Grenier D, Mayrand D. Selected characteristics of pathogenic and nonpathogenic strains of Bacteroides gingivalis. J Clin Microbiol, 1987, 25(4): 738-740.

[50]

Neiders ME, Chen PB, Suido H. Heterogeneity of virulence among strains of Bacteroides gingivalis. J Periodont Res, 1989, 24(3): 192-198.

[51]

Saito A, Inagaki S, Kimizuka R. Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol Med Microbiol, 2008, 54(3): 349-355.

[52]

Takemoto T, Hino T, Yoshida M. Characteristics of multimodal co-aggregation between Fusobacterium nucleatum and streptococci. J Periodont Res, 1995, 30(4): 252-257.

[53]

Werner J, Augustus AM, Misra R. Assembly of TolC, a structurally unique and multifunctional outer membrane protein of Escherichia coli K-12. J Bacteriol, 2003, 185(22): 6540-6547.

[54]

Bodilis J, Barray S. Molecular evolution of the major outer-membrane protein gene (oprF) of Pseudomonas. Microbiology, 2006, 152(Pt 4): 1075-1088.

[55]

Schröder W, Moser I. Primary structure analysis and adhesion studies on the major outer membrane protein of Campylobacter jejuni. FEMS Microbiol Lett, 1997, 150(1): 141-147.

[56]

Engstrom MD, Alteri CJ, Mobley HL. A conserved PapB family member, TosR, regulates expression of the uropathogenic Escherichia coli RTX nonfimbrial adhesin TosA while conserved LuxR family members TosE and TosF suppress motility. Infect Immun, 2014, 82(9): 3644-3656.

[57]

Sievers S, Sternkopf Lillebæk EM, Jacobsen K. A multicopy sRNA of Listeria monocytogenes regulates expression of the virulence adhesin LapB. Nucleic Acids Res, 2014, 42(14): 9383-9398.

[58]

Cook GS, Costerton JW, Lamont RJ. Biofilm formation by Porphyromonas gingivalis and Streptococcus gordonii. J Periodont Res, 1998, 33(6): 323-327.

[59]

Metzger Z, Blasbalg J, Dotan M. Characterization of coaggregation of Fusobacterium nucleatum PK1594 with six Porphyromonas gingivalis strains. J Endod, 2009, 35(1): 50-54.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/