Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation

Fei Teng , Tao He , Shi Huang , Cun-Pei Bo , Zhen Li , Jin-Lan Chang , Ji-Quan Liu , Duane Charbonneau , Jian Xu , Rui Li , Jun-Qi Ling

International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (3) : 182 -190.

PDF
International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (3) : 182 -190. DOI: 10.1038/ijos.2016.18
Article

Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation

Author information +
History +
PDF

Abstract

Daily use of a mouth rinse can effectively treat the gum disease gingivitis by reducing oral bacterial diversity and plaque formation. Dental plaque is a biofilm formed from multiple bacteria that can cause gingivitis and other infections if it is allowed to mature. Rui Li at Procter & Gamble International Operations in Singapore, and coworkers across China conducted a randomized trial on 91 adults to clarify the response of oral bacteria to treatment with cetylpyridinium chloride-based (CPC) mouth rinse. After intensive oral hygiene treatment for 21 days, the participants were split into a control group (given only water) and a CPC rinse group. Both groups followed a daily rinsing routine for three weeks. The team found the CPC rinse inhibited 17 gingivitisassociated bacteria, and significantly reduced plaque formation by disrupting bacterial interactions.

Keywords

cetylpyridinium chloride / oral microbiota / oral rinse

Cite this article

Download citation ▾
Fei Teng, Tao He, Shi Huang, Cun-Pei Bo, Zhen Li, Jin-Lan Chang, Ji-Quan Liu, Duane Charbonneau, Jian Xu, Rui Li, Jun-Qi Ling. Cetylpyridinium chloride mouth rinses alleviate experimental gingivitis by inhibiting dental plaque maturation. International Journal of Oral Science, 2016, 8(3): 182-190 DOI:10.1038/ijos.2016.18

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Petersen PE. The world oral health report 2003: continuous improvement of oral health in the 21st century—the approach of the WHO global oral health programme. Community Dent Oral Epidemiol, 2003, 31(Suppl 1): 3-23.

[2]

Ramseier CA, Kinney JS, Herr AE. Identification of pathogen and host-response markers correlated with periodontal disease. J Periodontol, 2009, 80(3): 436-446.

[3]

Eberhard J, Grote K, Luchtefeld M. Experimental gingivitis induces systemic inflammatory markers in young healthy individuals: a single-subject interventional study. PLoS One, 2013, 8(2): e55265.

[4]

Ylöstalo PV, Järvelin MR, Laitinen J. Gingivitis, dental caries and tooth loss: risk factors for cardiovascular diseases or indicators of elevated health risks. J Clin Periodontol, 2006, 33(2): 92-101.

[5]

Wu CD, Savitt ED. Evaluation of the safety and efficacy of over-the-counter oral hygiene products for the reduction and control of plaque and gingivitis. Periodontol 2000, 2002, 28: 91-105.

[6]

Boneta AE, Aguilar MM, Romeu FL. Comparative investigation of the efficacy of triclosan/copolymer/sodium fluoride and stannous fluoride/sodium hexametaphosphate/zinc lactate dentifrices for the control of established supragingival plaque and gingivitis in a six-month clinical study. J Clin Dent, 2010, 21(4): 117-123.

[7]

Costa X, Laguna E, Herrera D. Efficacy of a new mouth rinse formulation based on 0.07% cetylpyridinium chloride in the control of plaque and gingivitis: a 6-month randomized clinical trial. J Clin Periodontol, 2013, 40(11): 1007-1015.

[8]

Fine DH. Chemical agents to prevent and regulate plaque development. Periodontol 2000, 1995, 8: 87-107.

[9]

Teles RP, Teles FR. Antimicrobial agents used in the control of periodontal biofilms: effective adjuncts to mechanical plaque control?. Braz Oral Res, 2009, 23(Suppl 1): 39-48.

[10]

Haps S, Slot DE, Berchier CE. The effect of cetylpyridinium chloride-containing mouth rinses as adjuncts to toothbrushing on plaque and parameters of gingival inflammation: a systematic review. Int J Dent Hyg, 2008, 6(4): 290-303.

[11]

Gunsolley JC. Clinical efficacy of antimicrobial mouthrinses. J Dent, 2010, 38(Suppl 1): S6-S10.

[12]

Haraszthy VI, Zambon JJ, Sreenivasan PK. The antimicrobial efficacy of commercial dentifrices. Gen Dent, 2010, 58(1): 50-55.

[13]

Kistler JO, Booth V, Bradshaw DJ. Bacterial community development in experimental gingivitis. PLoS One, 2013, 8(8): e71227.

[14]

Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontol 2000, 2002, 28: 12-55.

[15]

Xu X, He J, Xue J. Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol, 2015, 17(3): 699-710.

[16]

Wade W. Unculturable bacteria—the uncharacterized organisms that cause oral infections. J R Soc Med, 2002, 95(2): 81-83.

[17]

Huang S, Li R, Zeng X. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. ISME J, 2014, 8(9): 1768-1780.

[18]

Pan PC, Harper S, Ricci-Nittel D. In-vitro evidence for efficacy of antimicrobial mouthrinses. J Dent, 2010, 38(Suppl 1): S16-S20.

[19]

Eley BM. Antibacterial agents in the control of supragingival plaque—a review. Br Dent J, 1999, 186(6): 286-296.

[20]

Sreenivasan PK, Haraszthy VI, Zambon JJ. Antimicrobial efficacy of 0·05% cetylpyridinium chloride mouthrinses. Lett Appl Microbiol, 2013, 56(1): 14-20.

[21]

Rioboo M, García V, Serrano J. Clinical and microbiological efficacy of an antimicrobial mouth rinse containing 0.05% cetylpyridinium chloride in patients with gingivitis. Int J Dent Hyg, 2012, 10(2): 98-106.

[22]

Huang S, Yang F, Zeng X. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis. BMC Oral Health, 2011, 11: 33.

[23]

Yang F, Zeng X, Ning K. Saliva microbiomes distinguish caries-active from healthy human populations. ISME J, 2012, 6(1): 1-10.

[24]

Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One, 2011, 6(12): e27310.

[25]

Schloss PD, Westcott SL, Ryabin T. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 2009, 75(23): 7537-7541.

[26]

Faust K, Sathirapongsasuti JF, Izard J. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol, 2012, 8(7): e1002606.

[27]

Shannon P, Markiel A, Ozier O. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003, 13(11): 2498-2504.

[28]

Rôças IN, Siqueira JF Jr. Prevalence of new candidate pathogens Prevotella baroniae, Prevotella multisaccharivorax and as-yet-uncultivated Bacteroidetes clone X083 in primary endodontic infections. J Endod, 2009, 35(10): 1359-1362.

[29]

Gürsoy M, Haraldsson G, Hyvönen M. Does the frequency of Prevotella intermedia increase during pregnancy?. Oral Microbiol Immunol, 2009, 24(4): 299-303.

[30]

Griffen AL, Beall CJ, Campbell JH. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J, 2012, 6(6): 1176-1185.

[31]

Marsh PD, Moter A, Devine DA. Dental plaque biofilms: communities, conflict and control. Periodontol 2000, 2011, 55(1): 16-35.

[32]

Marsh PD. Are dental diseases examples of ecological catastrophes?. Microbiology, 2003, 149(Pt 2): 279-294.

[33]

Li Y, He J, He Z. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. ISME J, 2014, 8(9): 1879-1891.

[34]

He J, Li Y, Cao Y. The oral microbiome diversity and its relation to human diseases. Folia Microbiol, 2015, 60(1): 69-80.

[35]

Aas JA, Paster BJ, Stokes LN. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol, 2005, 43(11): 5721-5732.

[36]

Liu Z, Zhang W, Zhang J. Oral hygiene, periodontal health and chronic obstructive pulmonary disease exacerbations. J Clin Periodontol, 2012, 39(1): 45-52.

[37]

Abusleme L, Dupuy AK, Dutzan N. The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. ISME J, 2013, 7(5): 1016-1025.

[38]

Socransky SS, Haffajee AD, Cugini MA. Microbial complexes in subgingival plaque. J Clin Periodontol, 1998, 25(2): 134-144.

[39]

Latimer J, Munday JL, Buzza KM. Antibacterial and anti-biofilm activity of mouthrinses containing cetylpyridinium chloride and sodium fluoride. BMC Microbiol, 2015, 15: 169.

[40]

Raangs GC, Winkel EG, van Winkelhoff AJ. In vitro antimicrobial effects of two antihalitosis mouth rinses on oral pathogens and human tongue microbiota. Int J Dent Hyg, 2013, 11(3): 203-207.

[41]

Sandt C, Barbeau J, Gagnon MA. Role of the ammonium group in the diffusion of quaternary ammonium compounds in Streptococcus mutans biofilms. J Antimicrob Chemother, 2007, 60(6): 1281-1287.

[42]

Shi B, Chang M, Martin J. Dynamic changes in the subgingival microbiome and their potential for diagnosis and prognosis of periodontitis. MBio, 2015, 6(1): e01926-14.

[43]

Socransky SS, Haffajee AD, Teles R. Effect of periodontal therapy on the subgingival microbiota over a 2-year monitoring period. I. Overall effect and kinetics of change. J Clin Periodontol, 2013, 40(8): 771-780.

[44]

Schwarzberg K, Le R, Bharti B. The personal human oral microbiome obscures the effects of treatment on periodontal disease. PLoS One, 2014, 9(1): e86708.

[45]

Busscher HJ, White DJ, Atema-Smit J. Surfactive and antibacterial activity of cetylpyridinium chloride formulations in vitro and in vivo. J Clin Periodontol, 2008, 35(6): 547-554.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/