Modification of tooth development by heat shock protein 60

Tamas Papp , Angela Polyak , Krisztina Papp , Zoltan Meszar , Roza Zakany , Eva Meszar-Katona , Palne Terdik Tünde , Chang Hwa Ham , Szabolcs Felszeghy

International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (1) : 24 -31.

PDF
International Journal of Oral Science ›› 2016, Vol. 8 ›› Issue (1) : 24 -31. DOI: 10.1038/ijos.2015.53
Article

Modification of tooth development by heat shock protein 60

Author information +
History +
PDF

Abstract

Increased levels of a protein produced in response to stress cause abnormal tooth development. Similar ‘heat shock’ proteins, including Hsp 25 and Hsp 27, have previously been implicated in the origin and formation of teeth, but no one had looked at Hsp 60. Tamás Papp from the University of Debrecen, Hungary, and colleagues examined the expression pattern of Hsp 60 in the lower incisors of mice. They found high levels of the protein in tooth germs, in layers inside the enamel organ called the stratum intermedium, ameloblasts and in cells of the outer dental pulp. The authors applied extra amounts of Hsp 60 to the teeth of embryonic mice and observed morphological defects in the precursor cells that eventually form teeth. The findings suggest that Hsp 60 could be involved in dental disease.

Keywords

enamel organ / heat shock protein 60 / inhibitor of κB kinase / morphology / mouse / tooth development

Cite this article

Download citation ▾
Tamas Papp, Angela Polyak, Krisztina Papp, Zoltan Meszar, Roza Zakany, Eva Meszar-Katona, Palne Terdik Tünde, Chang Hwa Ham, Szabolcs Felszeghy. Modification of tooth development by heat shock protein 60. International Journal of Oral Science, 2016, 8(1): 24-31 DOI:10.1038/ijos.2015.53

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cobourne MT, Sharpe PT. Making up the numbers: the molecular control of mammalian dental formula. Semin Cell Dev Biol, 2010, 21(3): 314-324.

[2]

Rothova M, Thompson H, Lickert H. Lineage tracing of the endoderm during oral development. Dev Dyn, 2012, 241(7): 1183-1191.

[3]

Koussoulakou DS, Margaritis LH, Koussoulakos SL. A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci, 2009, 5(3): 226-243.

[4]

Harada H, Kettunen P, Jung HS. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol, 1999, 147(1): 105-120.

[5]

Liu F, Chu EY, Watt B. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol, 2008, 313(1): 210-224.

[6]

Tummers M, Thesleff I. The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool B Mol Dev Evol, 2009, 312B(4): 309-319.

[7]

Felszeghy S, Suomalainen M, Thesleff I. Notch signalling is required for the survival of epithelial stem cells in the continuously growing mouse incisor. Differentiation, 2010, 80(4/5): 241-248.

[8]

Seidel K, Ahn CP, Lyons D. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development, 2010, 137(22): 3753-3761.

[9]

Lesot H, Brook AH. Epithelial histogenesis during tooth development. Arch Oral Biol, 2009, 54(Suppl 1): S25-S33.

[10]

Lesot H, Kieffer-Combeau S, Fausser JL. Cell-cell and cell-matrix interactions during initial enamel organ histomorphogenesis in the mouse. Connect Tissue Res, 2002, 43(2/3): 191-200.

[11]

Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev, 2000, 92(1): 19-29.

[12]

Simmer JP, Papagerakis P, Smith CE. Regulation of dental enamel shape and hardness. J Dent Res, 2010, 89(10): 1024-1038.

[13]

Liu M, Zhao S, Wang XP. YAP overexpression affects tooth morphogenesis and enamel knot patterning. J Dent Res, 2014, 93(5): 469-474.

[14]

Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol, 2012, 4(4): a008425.

[15]

Courtney JM, Blackburn J, Sharpe PT. The Ectodysplasin and NF-κB signalling pathways in odontogenesis. Arch Oral Biol, 2005, 50(2): 159-163.

[16]

Ohazama A, Sharpe PT. TNF signalling in tooth development. Curr Opin Genet Dev, 2004, 14(5): 513-519.

[17]

Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell, 2008, 132(3): 344-362.

[18]

Israël A. The IKK complex, a central regulator of NF-κB activation. Cold Spring Harb Perspect Biol, 2010, 2(3): a000158.

[19]

Chun JN, Choi B, Lee KW. Cytosolic Hsp60 is involved in the NF-κB-dependent survival of cancer cells via IKK regulation. PLoS One, 2010, 5(3): e9422.

[20]

Richter K, Haslbeck M, Buchner J. The heat shock response: life on the verge of death. Mol Cell, 2010, 40(2): 253-266.

[21]

Beere HM. Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest, 2005, 115(10): 2633-2639.

[22]

Zhu Y, Zhu J, Wan X. Gene expression of sHsps, Hsp40 and Hsp60 families in normal and abnormal embryonic development of mouse forelimbs. Toxicol Lett, 2010, 193(3): 242-251.

[23]

Rupik W, Jasik K, Bembenek J. The expression patterns of heat shock genes and proteins and their role during vertebrate's development. Comp Biochem Physiol A Mol Integr Physiol, 2011, 159(4): 349-366.

[24]

Calderwood SK, Mambula SS, Gray PJ Jr. Extracellular heat shock proteins in cell signaling. FEBS Lett, 2007, 581(19): 3689-3694.

[25]

Li Z, Qiao Y, Liu B. Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin Cancer Res, 2005, 11(12): 4460-4468.

[26]

Ruan W, Wang Y, Ma Y. HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma. J Exp Clin Cancer Res, 2010, 29: 41.

[27]

Morimoto RI. Cells in stress: transcriptional activation of heat shock genes. Science, 1993, 259(5100): 1409-1410.

[28]

Calderwood SK, Mambula SS, Gray PJ Jr. Extracellular heat shock proteins in cell signaling and immunity. Ann N Y Acad Sci, 2007, 1113: 28-39.

[29]

Tian J, Guo X, Liu XM. Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovasc Res, 2013, 98(3): 391-401.

[30]

Sainte-Marie G. Parrafin embedding technique for studies employing immunofluorescence. J Histochem Cytochem, 1962, 10(3): 250-256.

[31]

Constantine VS, Mowry RW. Selective staining of human dermal collagen. II. The use of picrosirius red F3BA with polarization microscopy. J Invest Dermatol, 1968, 50(5): 419-423.

[32]

Modis L. Organization of the extracellular matrix: a polarization microscopic approach. Topo-optical reactions used in polarization microscopic ultrastructure research, 1991 Boca Raton 58-61.

[33]

Girard F, Meszar Z, Marti C. Gene expression analysis in the parvalbumin-immunoreactive PV1 nucleus of the mouse lateral hypothalamus. Eur J Neurosci, 2011, 34(12): 1934-1943.

[34]

Zimmermann B, Girard F, Mészàr Z. Expression of the calcium binding proteins Necab-1,-2 and -3 in the adult mouse hippocampus and dentate gyrus. Brain Res, 2013, 1528: 1-7.

[35]

Harada H, Kettunen P, Jung HS. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol, 1999, 147(1): 105-120.

[36]

Fenton WA, Kashi Y, Furtak K. Residues in chaperonin GroEL required for polypeptide binding and release. Nature, 1994, 371(6498): 614-619.

[37]

Lee MJ, Cai J, Kwak SW. MAPK mediates Hsp25 signaling in incisor development. Histochem Cell Biol, 2009, 131(5): 593-603.

[38]

Ohshima H, Ajima H, Kawano Y. Transient expression of heat shock protein (Hsp)25 in the dental pulp and enamel organ during odontogenesis in the rat incisor. Arch Histol Cytol, 2000, 63(4): 381-395.

[39]

Nakasone N, Yoshie H, Ohshima H. An immunohistochemical study of the expression of heat-shock protein-25 and cell proliferation in the dental pulp and enamel organ during odontogenesis in rat molars. Arch Oral Biol, 2006, 51(5): 378-386.

[40]

Wada H, Kobayashi I, Yamaza H. In situ expression of heat shock proteins, Hsc73, Hsj2 and Hsp86 in the developing tooth germ of mouse lower first molar. Histochem J, 2002, 34(3/4): 105-109.

[41]

Leonardi R, Barbato E, Paganelli C. Immunolocalization of heat shock protein 27 in developing jaw bones and tooth germs of human fetuses. Calcif Tissue Int, 2004, 75(6): 509-516.

[42]

Vabulas RM, Wagner H, Schild H. Heat shock proteins as ligands of toll-like receptors. Curr Top Microbiol Immunol, 2002, 270: 169-184.

[43]

Ohashi K, Burkart V, Flohé S. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol, 2000, 164(2): 558-561.

[44]

Horst OV, Tompkins KA, Coats SR. TGF-beta1 inhibits TLR-mediated odontoblast responses to oral bacteria. J Dent Res, 2009, 88(4): 333-338.

[45]

Veerayutthwilai O, Byers MR, Pham TT. Differential regulation of immune responses by odontoblasts. Oral Microbiol Immunol, 2007, 22(1): 5-13.

[46]

Mikkola ML. Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet A, 2009, 149A(9): 2031-2036.

[47]

Zandi E, Rothwarf DM, Delhase M. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell, 1997, 91(2): 243-252.

[48]

Ohazama A, Hu Y, Schmidt-Ullrich R. A dual role for Ikkα in tooth development. Dev Cell, 2004, 6(2): 219-227.

[49]

Sil AK, Maeda S, Sano Y. IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature, 2004, 428(6983): 660-664.

[50]

Ruan W, Wang Y, Ma Y. HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma. J Exp Clin Cancer Res, 2010, 29: 41.

[51]

Fleischmannova J, Matalova E, Tucker AS. Mouse models of tooth abnormalities. Eur J Oral Sci, 2008, 116(1): 1-10.

[52]

Mao JJ, Robey PG, Prockop DJ. Stem cells in the face: tooth regeneration and beyond. Cell Stem Cell, 2012, 11(3): 291-301.

[53]

Naveau A, Seidel K, Klein OD. Tooth, hair and claw: comparing epithelial stem cell niches of ectodermal appendages. Exp Cell Res, 2014, 325(2): 96-103.

[54]

Di Felice V, Ardizzone N, Marcianò V. Senescence-associated HSP60 expression in normal human skin fibroblasts. Anat Rec A Discov Mol Cell Evol Biol, 2005, 284(1): 446-453.

[55]

Zhang YD, Chen Z, Song YQ. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res, 2005, 15(5): 301-316.

[56]

Catón J, Tucker AS. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat, 2009, 214(4): 502-515.

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/