Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro

Bingran Zhao , Henny C van der Mei , Minie Rustema-Abbing , Henk J Busscher , Yijin Ren

International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (4) : 250 -258.

PDF
International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (4) : 250 -258. DOI: 10.1038/ijos.2015.45
Article

Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro

Author information +
History +
PDF

Abstract

The risk of infection may be reduced by constructing dental implants from combinations of materials that resist bacterial growth. Microbes can potentially form antibiotic-resistant biofilms on the surface of implants, particularly if the surrounding tissue does not form a tight seal. Researchers led by Yijin Ren at the University of Groningen in The Netherlands devised a ‘coculture’ model to study how oral bacteria interfere with bone cell growth on different implant materials. Although smooth titanium surfaces work well in gum tissue, the researchers found that oral bacteria readily displaced bone cells from this material. Materials based on zirconium or titanium-zirconium alloys provided a far more hospitable environment for bone cell growth, even amid biofilm-forming pathogens. These results suggest that implants composed of two different materials may facilitate better integration of implants.

Keywords

biofilm / co-culture / dental implant / osteoblasts / sub-gingival pathogens / titanium-zirconium alloy

Cite this article

Download citation ▾
Bingran Zhao, Henny C van der Mei, Minie Rustema-Abbing, Henk J Busscher, Yijin Ren. Osteoblast integration of dental implant materials after challenge by sub-gingival pathogens: a co-culture study in vitro. International Journal of Oral Science, 2015, 7(4): 250-258 DOI:10.1038/ijos.2015.45

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Grainger DW, Van der Mei HC, Jutte PC. Critical factors in the translation of improved antimicrobial strategies for medical implants and devices. Biomaterials, 2013, 34(37): 9237-9243.

[2]

Busscher HJ, Van der Mei HC, Subbiahdoss G. Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med, 2012, 4(153): 153rv10.

[3]

Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science, 1987, 237(4822): 1588-1595.

[4]

Fletcher N, Sofianos D, Berkes MB. Prevention of perioperative infection. J Bone Joint Surg Am, 2007, 89(7): 1605-1618.

[5]

Grabe M, Botto H, Cek M. Preoperative assessment of the patient and risk factors for infectious complications and tentative classification of surgical field contamination of urological procedures. World J Urol, 2012, 30(1): 39-50.

[6]

Zimmerli W. Infection and musculoskeletal conditions: prosthetic-joint-associated infections. Best Pract Res Clin Rheumatol, 2006, 20(6): 1045-1063.

[7]

Sharaf B, Jandali-Rifai M, Susarla S. Do perioperative antibiotics decrease implant failure?. J Oral Maxillofac Surg, 2011, 69: 2345-2350.

[8]

Gynther GW, Kondell PA, Moberg LE. Dental implant installation without antibiotic prophylaxis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 85: 509-511.

[9]

Yue C, Zhao B, Ren Y. The implant infection paradox: why do some succeed when others fail?. Eur Cell Mater, 2015, 29: 303-310.

[10]

Van Brakel R, Meijer GJ, Verhoeven JW. Soft tissue response to zirconia and titanium implant abutments: an in vivo within-subject comparison. J Clin Periodontol, 2012, 39(10): 995-1001.

[11]

Zhao B, Van der Mei HC, Subbiahdoss G. Soft tissue integration versus early biofilm formation on different dental implant materials. Dent Mater, 2014, 30(7): 716-727.

[12]

Subbiahdoss G, Grijpma DW, Van der Mei HC. Microbial biofilm growth versus tissue integration on biomaterials with different wettabilities and a polymer-brush coating. J Biomed Mater Res A, 2010, 94(2): 533-538.

[13]

Lee JH, Wang H, Kaplan JB. Microfluidic approach to create three-dimensional tissue models for biofilm-related infection of orthopaedic implants. Tissue Eng Part C Methods, 2010, 17(8): 39-48.

[14]

Lai CH, Chang YY, Huang HL. Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants. Thin Solid Films, 2011, 520(4): 1525-1531.

[15]

Wu Y, Zitelli JP, TenHuisen KS. Differential response of staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials, 2011, 32(4): 951-960.

[16]

Subbiahdoss G, Kuijer R, Grijpma DW. Microbial biofilm growth vs. tissue integration: “the race for the surface” experimentally studied. Acta Biomater, 2009, 5(5): 1399-1404.

[17]

Subbiahdoss G, Kuijer R, Busscher HJ. Mammalian cell growth versus biofilm formation on biomaterial surfaces in an in vitro post-operative contamination model. Microbiology, 2010, 156(10): 3073-3078.

[18]

Charalampakis G, Leonhardt A, Rabe P. Clinical and microbiological characteristics of peri-implantitis cases: a retrospective multicentre study. Clin Oral Implants Res, 2012, 23(9): 1045-1054.

[19]

Berglundh T, Persson L, Klinge B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J Clin Periodontol, 2002, 29(Suppl 3): 197-212.

[20]

Persson GR, Samuelsson E, Lindahl C. Mechanical non-surgical treatment of peri-implantitis: a single-blinded randomized longitudinal clinical study. II. Microbiological results. J Clin Periodontol, 2010, 37(6): 563-573.

[21]

Albrektsson T, Branemark PI, Hansson HA. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand, 1981, 52(2): 155-170.

[22]

Geetha M, Singh A, Asokamani R. Ti based biomaterials, the ultimate choice for orthopaedic implants–a review. Prog Mater Sci, 2009, 54(3): 397-425.

[23]

Lee JS, Kim HM, Kim CS. Long-term retrospective study of narrow implants for fixed dental prostheses. Clin Oral Implants Res, 2013, 24(8): 847-852.

[24]

Hallman M. A prospective study of treatment of severely resorbed maxillae with narrow nonsubmerged implants: results after 1 year of loading. Int J Oral Maxillofac Implants, 2001, 16(5): 731-736.

[25]

Bourauel C, Aitlahrach M, Heinemann F. Biomechanical finite element analysis of small diameter and short dental implants: extensive study of commercial implants. Biomed Tech (Berl), 2012, 57(1): 21-32.

[26]

Gottlow J, Dard M, Kjellson F. Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig. Clin Implant Dent Relat Res, 2012, 14(4): 538-545.

[27]

Dunn DB. The use of a zirconia custom implant-supported fixed partial denture prosthesis to treat implant failure in the anterior maxilla: a clinical report. J Prosthet Dent, 2008, 100(6): 415-421.

[28]

Saulacic N, Bosshardt DD, Bornstein MM. Bone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants. Eur Cell Mater, 2012, 23(1): 273-288.

[29]

Stadlinger B, Hennig M, Eckelt U. Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs. Int J Oral Maxillofac Surg, 2010, 39(6): 585-592.

[30]

Wen B, Zhu F, Li Z. The osseointegration behavior of titanium-zirconium implants in ovariectomized rabbits. Clin Oral Implants Res, 2014, 25(7): 819-825.

[31]

Rompen E. The impact of the type and configuration of abutments and their (repeated) removal on the attachment level and marginal bone. Eur J Oral Implantol, 2012, 5(Suppl): S83-S90.

[32]

Andreiotelli M, Wenz HJ, Kohal RJ. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin Oral Implants Res, 2009, 20(Suppl 4): 32-47.

[33]

Linares A, Domken O, Dard M. Peri-implant soft tissues around implants with a modified neck surface. Part 1. Clinical and histometric outcomes: a pilot study in minipigs. J Clin Periodontol, 2013, 40(4): 412-420.

[34]

Schwarz F, Mihatovic I, Golubovic V. Experimental peri‐implant mucositis at different implant surfaces. J Clin Periodontol, 2014, 41(5): 513-520.

[35]

Schmidlin PR, Muller P, Attin T. Polyspecies biofilm formation on implant surfaces with different surface characteristics. J Appl Oral Sci, 2013, 21(1): 48-55.

[36]

Sanchez MC, Llama-Palacios A, Fernandez E. An in vitro biofilm model associated to dental implants: structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces. Dent Mater, 2014, 30(10): 1161-1171.

[37]

Pisarek M, Roguska A, Andrzejczuk M. Effect of two-step functionalization of Ti by chemical processes on protein adsorption. Appl Surf Sci, 2011, 257(19): 8196-8204.

[38]

Polyakov AV, Semenova IP, Valiev RZ. High fatigue strength and enhanced biocompatibility of UFG CP Ti for medical innovative applications. IOP Conf Ser Mater Sci Eng, 2014, 63(1): 012113.

[39]

Heydorn A, Nielsen AT, Hentzer M. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology, 2000, 146(Pt 10): 2395-2407.

[40]

Kuula H, Kononen E, Lounatmaa K. Attachment of oral gram-negative anaerobic rods to a smooth titanium surface: an electron microscopy study. Int J Oral Maxillofac Implants, 2004, 19(6): 803-809.

[41]

Gottenbos B, Van der Mei HC, Busscher HJ. Initial adhesion and surface growth of Staphylococcus epidermidis and Pseudomonas aeruginosa on biomedical polymers. J Biomed Mater Res, 2000, 50(2): 208-214.

[42]

Vandrovcova M, Hanus J, Drabik M. Effect of different surface nanoroughness of titanium dioxide films on the growth of human osteoblast-like MG63 cells. J Biomed Mater Res A, 2012, 100(4): 1016-1032.

[43]

Utting JC, Robins SP, Brandao-Burch A. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp Cell Res, 2006, 312(10): 1693-1702.

[44]

Zhang S, Sun J, Xu Y. Biological behavior of osteoblast-like cells on titania and zirconia films deposited by cathodic arc deposition. Biointerphases, 2012, 7(1): 60.

[45]

Yamashita D, Machigashira M, Miyamoto M. Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J, 2009, 28(4): 461-470.

[46]

Gong SH, Lee H, Pae A. Gene expression of MC3T3-E1 osteoblastic cells on titanium and zirconia surface. J Adv Prosthodont, 2013, 5(4): 416-422.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/