Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers

Ruth Alvarez , Hye-Lim Lee , Cun-Yu Wang , Christine Hong

International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (4) : 213 -219.

PDF
International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (4) : 213 -219. DOI: 10.1038/ijos.2015.42
Article

Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers

Author information +
History +
PDF

Abstract

Dental stem cells with the greatest potential for regenerating bone and cartilage can be identified by three proteins on the cell surface. Christine Hong and co-workers at the University of California Los Angeles investigated stem cells purified from the ligaments that attach teeth to the jaw bone. This tissue can be readily obtained from extracted teeth. It offers a convenient source of stem cells that have previously been shown to regenerate bone, the surface layer of tooth root, and the ligament itself. Hong’s team found that human stem cells obtained in this way vary significantly in their regenerative capacity and therefore therapeutic potential. They identified the combination of surface proteins that marks out the best cells for repairing bone and cartilage. This will assist the isolation of uniform preparations of these cells for regenerative therapy.

Keywords

cell surface markers / dental mesenchymal stem cells / periodontal ligament

Cite this article

Download citation ▾
Ruth Alvarez, Hye-Lim Lee, Cun-Yu Wang, Christine Hong. Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers. International Journal of Oral Science, 2015, 7(4): 213-219 DOI:10.1038/ijos.2015.42

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Horwitz EM, Prockop DJ, Fitzpatrick LA. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med, 1999, 5(3): 309-313.

[2]

Yamada Y, Ueda M, Hibi H. A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet-rich plasma using tissue engineering technology: a clinical case report. Int J Periodontics Restorative Dent, 2006, 26(4): 363-369.

[3]

Pittenger MF, Mackay AM, Beck SC. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.

[4]

Wei X, Yang X, Han ZP. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin, 2013, 34(6): 747-754.

[5]

Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther, 2008, 10(5): 223.

[6]

Wada N, Menicanin D, Shi S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol, 2009, 219(3): 667-676.

[7]

Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res, 2009, 88(9): 792-806.

[8]

Park JC, Kim JM, Jung IH. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. J Clin Periodontol, 2011, 38(8): 721-731.

[9]

Lv FJ, Tuan RS, Cheung KM. Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells, 2014, 32(6): 1408-1419.

[10]

Silvério KG, Rodrigues TL, Coletta RD. Mesenchymal stem cell properties of periodontal ligament cells from deciduous and permanent teeth. J Periodontol, 2010, 81(8): 1207-1215.

[11]

Seo BM, Miura M, Gronthos S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004, 364(9429): 149-155.

[12]

Liu Y, Zheng Y, Ding G. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells, 2008, 26(4): 1065-1073.

[13]

Coura GS, Garcez RC, de Aguiar CB. Human periodontal ligament: a niche of neural crest stem cells. J Periodont Res, 2008, 43(5): 531-536.

[14]

Miletich I, Sharpe PT. Neural crest contribution to mammalian tooth formation. Birth Defects Res C Embryo Today, 2004, 72(2): 200-212.

[15]

Lekic P, Rojas J, Birek C. Phenotypic comparison of periodontal ligament cells in vivo and in vitro. J Periodont Res, 2001, 36(2): 71-79.

[16]

Shimono M, Ishikawa T, Ishikawa H. Regulatory mechanisms of periodontal regeneration. Microsc Res Tech, 2003, 60(5): 491-502.

[17]

Nagatomo K, Komaki M, Sekiya I. Stem cell properties of human periodontal ligament cells. J Periodont Res, 2006, 41(4): 303-310.

[18]

Reinhardt RA, Payne JB, Maze CA. Influence of estrogen and osteopenia/osteoporosis on clinical periodontitis in postmenopausal women. J Periodontol, 1999, 70(8): 823-828.

[19]

Petersen PE, Ogawa H. The global burden of periodontal disease: towards integration with chronic disease prevention and control. Periodontol 2000, 2012, 60(1): 15-39.

[20]

Kim SH, Seo BM, Choung PH. Adult stem cell therapy for periodontal disease. Int J Stem Cells, 2010, 3(1): 16-21.

[21]

Lindhe J, Lang NP. Clinical periodontology and implant dentistry. 6th ed, 2015 Oxford

[22]

Bartold PM, Xiao Y, Lyngstaadas SP. Principles and applications of cell delivery systems for periodontal regeneration. Periodontol 2000, 2006, 41: 123-135.

[23]

Xu J, Wang W, Kapila Y. Multiple differentiation capacity of STRO-1+/CD146+ PDL mesenchymal progenitor cells. Stem Cells Dev, 2009, 18(3): 487-496.

[24]

Bueno C, Ramirez C, Rodríguez-Lozano FJ. Human adult periodontal ligament-derived cells integrate and differentiate after implantation into the adult mammalian brain. Cell Transplant, 2013, 22(11): 2017-2028.

[25]

Li X, Gong P, Liao D. In vitro neural/glial differentiation potential of periodontal ligament stem cells. Arch Med Sci, 2010, 6(5): 678-685.

[26]

Trubiani O, Di Primio R, Traini T. Morphological and cytofluorimetric analysis of adult mesenchymal stem cells expanded ex vivo from periodontal ligament. Int J Immunopathol Pharmacol, 2005, 18(2): 213-221.

[27]

Iwata T, Yamato M, Zhang Z. Validation of human periodontal ligament-derived cells as a reliable source for cytotherapeutic use. J Clin Periodontol, 2010, 37(12): 1088-1099.

[28]

Lin NH, Gronthos S, Bartold PM. Stem cells and future periodontal regeneration. Periodontol 2000, 2009, 51: 239-251.

[29]

Dangaria SJ, Ito Y, Luan X. Successful periodontal ligament regeneration by periodontal progenitor preseeding on natural tooth root surfaces. Stem Cells Dev, 2011, 20(10): 1659-1668.

[30]

Gault P, Black A, Romette JL. Tissue-engineered ligament: implant constructs for tooth replacement. J Clin Periodontol, 2010, 37(8): 750-758.

[31]

Kim RH, Mehrazarin S, Kang MK. Therapeutic potential of mesenchymal stem cells for oral and systemic diseases. Dent Clin North Am, 2012, 56(3): 651-675.

[32]

Pinho S, Lacombe J, Hanoun M. PDGFRα and CD51 mark human Nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med, 2013, 210(7): 1351-1367.

[33]

Mabuchi Y, Morikawa S, Harada S. LNGFR+THY-1+VCAM-1hi+ cells reveal functionally distinct subpopulations in mesenchymal stem cells. Stem Cell Reports, 2013, 1(2): 152-165.

[34]

Fan Z, Yamaza T, Lee JS. BCOR regulates mesenchymal stem cell function by epigenetic mechanisms. Nat Cell Biol, 2009, 11(8): 1002-1009.

[35]

Arpornmaeklong P, Brown SE, Wang Z. Phenotypic characterization, osteoblastic differentiation, and bone regeneration capacity of human embryonic stem cell-derived mesenchymal stem cells. Stem Cells Dev, 2009, 18(7): 955-968.

[36]

Bakopoulou A, Leyhausen G, Volk J. Comparative characterization of STRO-1neg/CD146pos and STRO-1pos/CD146pos apical papilla stem cells enriched with flow cytometry. Arch Oral Biol, 2013, 58(10): 1556-1568.

[37]

Tomellini E, Lagadec C, Polakowska R. Role of p75 neurotrophin receptor in stem cell biology: more than just a marker. Cell Mol Life Sci, 2014, 71(13): 2467-2481.

[38]

He XL, Garcia KC. Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science, 2004, 304(5672): 870-875.

[39]

Alvarez-Viejo M, Menendez-Menendez Y, Blanco-Gelaz MA. LNGFR (CD271) as a marker to identify mesenchymal stem cells from different human sources: umbilical cord blood, Wharton’s jelly and bone marrow. Bone Marrow Res, 2013, 1(132): 1-6.

[40]

Kuçi S, Kuçi Z, Kreyenberg H. CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica, 2010, 95(4): 651-659.

[41]

Jones EA, Kinsey SE, English A. Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum, 2002, 46(12): 3349-3360.

[42]

Quirici N, Soligo D, Bossolasco P. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp Hematol, 2002, 30(7): 783-791.

[43]

Flores-Torales E, Orozco-Barocio A, Gonzalez-Ramella OR. The CD271 expression could be alone for establisher phenotypic marker in bone marrow derived mesenchymal stem cells. Folia Histochem Cytobiol, 2010, 48(4): 682-686.

[44]

Nosrat CA, Fried K, Lindskog S. Cellular expression of neurotrophin mRNAs during tooth development. Cell Tissue Res, 1997, 290(3): 569-580.

[45]

Alexander D, Schäfer F, Munz A. LNGFR induction during osteogenesis of human jaw periosteum-derived cells. Cell Physiol Biochem, 2009, 24(3/4): 283-290.

[46]

Stewart K, Walsh S, Screen J. Further characterization of cells expressing STRO-1 in cultures of adult human bone marrow stromal cells. J Bone Miner Res, 1999, 14(8): 1345-1356.

[47]

Sacchetti B, Funari A, Michienzi S. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 2007, 131(2): 324-336.

[48]

Espagnolle N, Guilloton F, Deschaseaux F. CD146 expression on mesenchymal stem cells is associated with their vascular smooth muscle commitment. J Cell Mol Med, 2014, 18(1): 104-114.

[49]

Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 2003, 18(4): 696-704.

[50]

Shih IM. The role of CD146 (Mel-CAM) in biology and pathology. J Pathol, 1999, 189(1): 4-11.

[51]

Chong JJ, Reinecke H, Iwata M. Progenitor cells identified by PDGFR-alpha expression in the developing and diseased human heart. Stem Cells Dev, 2013, 22(13): 1932-1943.

[52]

Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell, 1992, 69(1): 11-25.

[53]

Wilder RL. Integrin alpha V beta 3 as a target for treatment of rheumatoid arthritis and related rheumatic diseases. Ann Rheum Dis, 2002, 61(Suppl 2): ii96-ii99.

[54]

Yubero N, Jiménez-Marín A, Barbancho M. Two cDNAs coding for the porcine CD51 (αv) integrin subunit: cloning, expression analysis, adhesion assays and chromosomal localization. Gene, 2011, 481(1): 29-40.

[55]

Park D, Xiang AP, Mao FF. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells, 2010, 28(12): 2162-2171.

[56]

Kaltschmidt B, Kaltschmidt C, Widera D. Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Rev, 2012, 8(3): 658-671.

[57]

Lee CH, Hajibandeh J, Suzuki T. Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A, 2014, 20(7/8): 1342-1351.

[58]

Lin Y, Gallucci GO, Buser D. Bioengineered periodontal tissue formed on titanium dental implants. J Dent Res, 2011, 90(2): 251-256.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/